
Parallel Environment Runtime Edition
Version 1 Release 2

PAMI Programming Guide

SA23-2273-03

���

Parallel Environment Runtime Edition
Version 1 Release 2

PAMI Programming Guide

SA23-2273-03

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 151.

This edition applies to:
v version 1, release 1, modification 0 of IBM Parallel Environment Runtime Edition for AIX (product number

5765-PER)

v version 1, release 2, modification 0 of IBM Parallel Environment Runtime Edition for Linux on Power (product
number 5765-PRP)

v version 1, release 2, modification 0 of IBM Parallel Environment Runtime Edition for Linux on X-Architecture
(product number 5725-G00)

and to all subsequent releases and modifications, until otherwise indicated in new editions.

© Copyright IBM Corporation 2011, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

|
|

Contents

About this information v
Information for AIX users v
Information for Linux users v
Who should use this information vi
Conventions and terminology used in this
information vi

Abbreviated names. vii
Prerequisite and related information viii
How to send your comments ix
National language support (NLS) ix
Functional restrictions for IBM PE Runtime Edition . x

Functional restrictions for IBM PE Runtime
Edition for AIX 1.1 x
Functional restrictions for IBM PE Runtime
Edition for Linux 1.2. x

Summary of changes x
Changes for PE x

Chapter 1. What's new in PAMI? 1

Chapter 2. PAMI subroutines 3
PAMI_AMCollective_dispatch_set 4
PAMI_Client_create 6
PAMI_Client_destroy 8
PAMI_Client_query. 10
PAMI_Client_update 12
PAMI_Collective. 14

pami_allreduce_t details 16
pami_broadcast_t details 17
pami_reduce_t details 17
pami_allgather_t details 18
pami_allgatherv_t details 18
pami_allgatherv_int_t details 19
pami_scatter_t details 19
pami_scatterv_t details 20
pami_scatterv_int_t details 20
pami_gather_t details 21
pami_gatherv_t details 21
pami_gatherv_int_t details 22
pami_alltoall_t details 22
pami_alltoallv_t details 23
pami_alltoallv_int_t details 23
pami_ambroadcast_t details 24
pami_amscatter_t details 24
pami_amgather_t details 25
pami_amreduce_t details 25
pami_scan_t details 26
pami_barrier_t details 26
pami_reduce_scatter_t details 26

PAMI_Context_advance 28
PAMI_Context_advancev 30
PAMI_Context_createv. 32
PAMI_Context_destroyv 35
PAMI_Context_lock. 37
PAMI_Context_post 39

PAMI_Context_query 41
PAMI_Context_trylock. 43
PAMI_Context_trylock_advancev 45
PAMI_Context_unlock 47
PAMI_Context_update. 49
PAMI_Dispatch_query 51
PAMI_Dispatch_set 53
PAMI_Dispatch_update 55
PAMI_Endpoint_create 57
PAMI_Endpoint_query 59
PAMI_Error_text. 61
PAMI_Extension_close 62
PAMI_Extension_open. 63
PAMI_Extension_symbol 65
PAMI_Fence_all 67
PAMI_Fence_begin 69
PAMI_Fence_end 71
PAMI_Fence_endpoint 73
PAMI_Geometry_algorithms_num 75
PAMI_Geometry_algorithms_query 77
PAMI_Geometry_create_tasklist. 79
PAMI_Geometry_create_taskrange 82
PAMI_Geometry_destroy 85
PAMI_Geometry_query 87
PAMI_Geometry_update 89
PAMI_Geometry_world 91
PAMI_Get 93
PAMI_Get_typed 95
PAMI_Memregion_create 97
PAMI_Memregion_destroy 99
PAMI_Purge. 101
PAMI_Put 103
PAMI_Put_typed 105
PAMI_Resume 107
PAMI_Rget 109
PAMI_Rget_typed 111
PAMI_Rmw 113
PAMI_Rput 116
PAMI_Rput_typed 118
PAMI_Send 120
PAMI_Send_immediate 122
PAMI_Send_typed. 124
PAMI_Type_add_simple 126
PAMI_Type_add_typed 128
PAMI_Type_complete 130
PAMI_Type_create. 132
PAMI_Type_deserialize 134
PAMI_Type_destroy 136
PAMI_Type_query. 137
PAMI_Type_serialize 139
PAMI_Type_transform_data 141
PAMI_Wtime 143
PAMI_Wtimebase 144

© Copyright IBM Corp. 2011, 2012 iii

|
||

Chapter 3. PAMI environment
variables 147

Accessibility features for PE 149
Accessibility features 149
Keyboard navigation 149
IBM and accessibility 149

Notices 151
Trademarks 153

Glossary 155

Index 165

iv Parallel Environment Runtime Edition: PAMI Programming Guide

About this information

Attention

This publication contains reference information about the parallel active messaging
interface (PAMI), which is a component of the Parallel Environment Runtime
Edition (PE) licensed program.

Information for AIX users
This information supports IBM® Parallel Environment Runtime Edition for AIX®

(5765-PER), Version 1 Release 1.

To make this information easier to read, the name IBM Parallel Environment Runtime
Edition has been abbreviated to IBM PE Runtime Edition, PE for AIX, Parallel
Environment, or more generally, PE throughout.

To use this information, you should be familiar with the AIX operating system.
Where necessary, background information related to AIX is provided but, more
commonly, it refers you to the appropriate documentation.

The Parallel Environment Runtime Edition for AIX information assumes that AIX
Version 7.1 (or later) is installed, in one of two ways:
v Standalone
v Connected by way of an Ethernet LAN supporting IP

For information on installing the AIX operating system, see the AIX Installation
Guide and Reference.

Information for Linux users
This information supports:
v IBM Parallel Environment Runtime Edition for Linux on Power Version 1,

Release 2 (5765-PRP)
v IBM Parallel Environment Runtime Edition for Linux on X-Architecture Version

1, Release 2 (5725-G00).

To make this information easier to read, the name IBM Parallel Environment Runtime
Edition has been abbreviated to, PE for Linux, or more generally, PE throughout.

The functions or features found herein may not be available on all operating
systems or platforms and do not indicate the availability of these functions or
features within the IBM product or future versions of the IBM product. The
development, release, and timing of any future features or functionality is at
IBM's sole discretion. IBM's plans, directions, and intent are subject to change
or withdrawal without notice at IBM's sole discretion. The information mentioned
is not a commitment, promise, or legal obligation to deliver any material, code or
functionality. The information may not be incorporated into any contract and it
should not be relied on in making a purchasing decision.

© Copyright IBM Corp. 2011, 2012 v

|
|

To use this information, you should be familiar with the Linux operating system.
Where necessary, background information related to Linux is provided but, more
commonly, it refers you to the appropriate documentation.

The Parallel Environment for Linux information assumes that one of the following
Linux distributions is already installed:
v Red Hat Enterprise Linux 6, Update 2 on IBM Power Systems™ servers, IBM

System x servers, and supported non-IBM x86-based servers
v SUSE LINUX Enterprise Server (SLES) 11 SP1 on IBM System x servers and

supported non-IBM x86-based servers.

PE for Linux is based on its predecessor, PE for AIX, with which you might be
familiar.

Who should use this information
This information is intended for programmers who write and run PAMI programs
on an AIX or Linux operating system. The programmer should be experienced
with UNIX-like environments, networked systems, and the C, C++, or Fortran
programming language.

Conventions and terminology used in this information
Table 1 shows the conventions used in this information:

Table 1. Conventions

Convention Usage

bold Bold words or characters represent system elements that you must
use literally, such as commands, flags, path names, directories, file
names, values, PE component names (poe, for example), and
selected menu options.

bold underlined bold underlined keywords are defaults. These take effect if you do
not specify a different keyword.

constant width Examples and information that the system displays appear in
constant-width typeface.

italic Italic words or characters represent variable values that you must
supply.

Italics are also used for unit titles, the first use of a glossary term,
and general emphasis in text.

<key> Angle brackets (less-than and greater-than) enclose the name of a
key on the keyboard. For example, <Enter> refers to the key on
your terminal or workstation that is labeled with the word Enter.

\ In command examples, a backslash indicates that the command or
coding example continues on the next line. For example:

mkcondition -r IBM.FileSystem -e “PercentTotUsed > 90” \
-E “PercentTotUsed < 85” -m d “FileSystem space used”

{item} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For
example, <Ctrl-c> means that you hold down the control key while
pressing <c>.

vi Parallel Environment Runtime Edition: PAMI Programming Guide

|

Table 1. Conventions (continued)

Convention Usage

item... Ellipses indicate that you can repeat the preceding item one or more
times.

| v In synopsis statements, vertical lines separate a list of choices. In
other words, a vertical line means Or.

v In the margin of the document, vertical lines indicate technical
changes to the information.

In addition to the highlighting conventions, this information uses the following
conventions when describing how to perform tasks.

User actions appear in uppercase boldface type. For example, if the action is to
enter the tool command, this information presents the instruction as:

ENTER
tool

Abbreviated names
Some of the abbreviated names used in this information follow.

AIX Advanced Interactive Executive

CSS communication subsystem

GUI graphical user interface

HFI Host Fabric Interface

IP Internet Protocol

LAPI Low-level Application Programming Interface

MDCR
MetaCluster Distributed Checkpoint Restart

MPI Message Passing Interface

MPICH2
Implementation of the Message Passing Interface created by Argonne
National Laboratory.

PAMI Parallel Active Messaging Interface

PDB Parallel Debugger

PE IBM Parallel Environment Runtime Edition

PE MPI
IBM's implementation of the MPI standard for PE

PE MPI-IO
IBM's implementation of MPI I/O for PE

PNSD Protocol Network Services Daemon

POE Parallel Operating Environment

PTF Program Temporary Fix

RSCT Reliable Scalable Cluster Technology

rsh remote shell

About this information vii

SCI Scalable Communication Infrastructure

STDERR
standard error

STDIN
standard input

STDOUT
standard output

System x™

IBM System x

Prerequisite and related information
The Parallel Environment Runtime Edition for AIX and Linux library consists of:
v IBM Parallel Environment Runtime Edition: Installation, SC23-6780
v IBM Parallel Environment Runtime Edition: LAPI Programming Guide,

SA23-2272
v IBM Parallel Environment Runtime Edition: Messages, SC23-6782
v IBM Parallel Environment Runtime Edition: MPI Programming Guide, SC23-6783
v IBM Parallel Environment Runtime Edition: MPI Subroutine Reference,

SC23-6784
v IBM Parallel Environment Runtime Edition: NRT API Programming Guide,

SC23-6785
v IBM Parallel Environment Runtime Edition: Operation and Use, SC23-6781
v IBM Parallel Environment Runtime Edition: PAMI Programming Guide,

SA23-2273

To access the most recent Parallel Environment Runtime Edition documentation in
PDF and HTML format, refer to the IBM Clusters Information Center
(http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp), on the Web.

Both the current Parallel Environment Runtime Edition books and earlier versions
of the library are also available in PDF format from the IBM Publication Center
(http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss), on the
Web.

It is easiest to locate a book in the IBM Publications Center by supplying the
book's publication number. The publication number for each of the Parallel
Environment books is listed after the book title in the preceding list.

You may also have the related product, IBM Parallel Environment Developer
Edition. The PE Developer Edition contains the IBM High Performance Toolkit
(HPC Toolkit), which is a collection of tools that allow you to analyze the
performance of both parallel and serial applications, written in C or FORTRAN,
over the AIX or Linux operating system.

After installation, documentation for the PE Developer Edition is located in the
/opt/ibmhpc/ppedev.hpct/doc directory. You can access the PE Developer Edition
documentation, as well as information about IBM's other High Performance
Computing products, from the HPC Central Web site (http://www.ibm.com/
developerworks/wikis/display/hpccentral/HPC+Central).

viii Parallel Environment Runtime Edition: PAMI Programming Guide

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www.ibm.com/developerworks/wikis/display/hpccentral/HPC+Central

How to send your comments
Your feedback is important in helping to provide the most accurate and
high-quality information. If you have comments about this information or other PE
documentation:
v Send your comments by e-mail to: mhvrcfs@us.ibm.com

Be sure to include the name of the book, the part number of the book, the
version of Parallel Environment Runtime Edition, and, if applicable, the specific
location of the text you are commenting on (for example, a page number or table
number).

v Fill out one of the forms at the back of this book and return it by mail, by fax, or
by giving it to an IBM representative.

National language support (NLS)
For national language support (NLS), all PE components and tools display
messages that are located in externalized message catalogs. English versions of the
message catalogs are shipped with the PE licensed program, but your site may be
using its own translated message catalogs. The PE components use the
environment variable NLSPATH to find the appropriate message catalog.
NLSPATH specifies a list of directories to search for message catalogs. The
directories are searched, in the order listed, to locate the message catalog. In
resolving the path to the message catalog, NLSPATH is affected by the values of
the environment variables LC_MESSAGES and LANG. If you get an error saying
that a message catalog is not found and you want the default message catalog, do
the following.

If you are using PE for AIX:

ENTER
export NLSPATH=/usr/lib/nls/msg/%L/%N

export LANG=C

If you are using PE for Linux:

ENTER
export NLSPATH=/usr/share/locale/%L/%N

export LANG=en_US

The PE message catalogs are in English, and are located in the following
directories.

If you are using PE for AIX:
/usr/lib/nls/msg/C

/usr/lib/nls/msg/En_US

/usr/lib/nls/msg/en_US

If you are using PE for Linux:
/usr/share/locale/C

/usr/share/locale/En_US

/usr/share/locale/en_US

/usr/share/locale/en_US.UTF-8

About this information ix

If your site is using its own translations of the message catalogs, consult your
system administrator for the appropriate value of NLSPATH or LANG.

PE for AIX users can refer to AIX: General Programming Concepts: Writing and
Debugging Programs for more information on NLS and message catalogs.

Functional restrictions for IBM PE Runtime Edition
For this release, there are functional restrictions that apply to IBM PE Runtime
Edition for AIX and IBM PE Runtime Edition for Linux.

Functional restrictions for IBM PE Runtime Edition for AIX 1.1
The functional restrictions for IBM PE Runtime Edition for AIX 1.1 are:
v The InfiniBand interconnect is not supported.

Functional restrictions for IBM PE Runtime Edition for Linux
1.2

Although many of the following functions, are currently available with IBM PE
Runtime Edition for AIX, they are not supported by IBM PE Runtime Edition for
Linux 1.2. The functional restrictions for IBM PE Runtime Edition for Linux are:
v User Space jobs with Red Hat Enterprise Linux, when running on IBM Power

Systems servers.
v Barrier synchronization register, when running on IBM POWER7 servers.

Summary of changes

Changes for PE
IBM Parallel Environment Runtime Edition contains a number of functional
enhancements, including:
v The IBM PE Runtime Edition is a new product, with new installation paths and

support structures. For more information, refer to IBM Parallel Environment
Runtime Edition: Installation.

v Support for launching and managing multiple parallel dynamic subjobs using a
single scheduler or resource management allocation of cluster resources.

v A generic tool called Parallel Environment shell (PESH), which resembles a
distributed shell with advanced grouping and filtering. It can be used for
executing commands on distributed nodes, as well as sending commands to, and
collecting distributed statistics from, running jobs. PESH also provides the ability
to run PNSD commands concurrently on multiple nodes.

v Support for running applications in lockless mode.
v Enhanced scalability such that PE is now architected to run one million tasks per

POE job.
v Support for the Host Fabric Interface (HFI) interconnect of the IBM POWER7

server in User Space.
v Support for the HFI global counter of the IBM POWER7 server, which has

replaced the global counter of the high performance switch as a time source.
v A new messaging API called the parallel active messaging interface (PAMI),

which replaces the LAPI interface used in earlier versions of Parallel
Environment. In addition to providing point-to-point messaging support, PAMI
also provides support for collective communications. This collective support is

x Parallel Environment Runtime Edition: PAMI Programming Guide

|

|

|
|
|

|
|

|

used by PE MPI where it is appropriate. LAPI is still supported by PE, but its
use is deprecated, and users should migrate to PAMI as soon as possible.

v For PE for AIX users, a new run queue-based coscheduler, in addition to the
POE priority adjustment coscheduler. The run queue-based coscheduler uses
features of AIX 7.1 and the POWER7 architecture to minimize the impact of jitter
on user applications.

v Compliance with all requirements of the Message Passing Interface 2.2 standard,
including the revisions listed in the Annex B Change-Log.

v For Linux users, support for checkpointing and restarting parallel jobs.
v The ability to create multiple PAMI contexts within each of the parallel API

instances defined for a job. This allows cross-talk between the communication
threads of each process, thereby providing greater performance. Note that the
current MPI implementation does not take advantage of the multiple PAMI
contexts feature.

v Extended task affinity support for jobs that are run on System x servers.
v Support for compiling and running applications that are Intel MPI ABI

(Application Binary Interface) compatible, using Intel compilers and other Intel
libraries. This support also includes a method for incorporating a POE module
in the user application such that a user can simply invoke the application binary
without running under POE (not Intel MPI ABI compatible).

Note: At this time, PE Runtime Edition provides an initial port of MPICH2 over
PAMI, with limited function only.

v Plug-ins (extensions) for third-party tool developers who want to create their
own implementations of selected PE function.

Note also that the Partition Manager daemon (PMD) is now a setuid
(set-userid-on-exec) program, which is owned only by the root user.

About this information xi

|

|
|
|
|
|

xii Parallel Environment Runtime Edition: PAMI Programming Guide

Chapter 1. What's new in PAMI?

Major changes and additions to PAMI include:

Table 2. Changes in this edition

Change or addition For more information, see:

PAMI is packaged with Parallel Environment Runtime Edition for Linux on
Power Version 1.2, which runs on the Host Fabric Interface (HFI)
interconnect adapter or the InfiniBand host channel adapter.

Table 3. Changes in the third edition

Change or addition For more information, see:

PAMI is packaged with Parallel Environment Runtime Edition for Linux on
X-Architecture Version 1.2, which runs on the Host Fabric Interface (HFI)
interconnect adapter or the InfiniBand host channel adapter.

New environment variables for MPICH2:

PAMI_EAGER

PAMI_RMA_PENDING

PAMI_RVZ

PAMI_RZV

PAMI_SHMEM_PT2PT

Chapter 3, “PAMI environment
variables,” on page 147

© Copyright IBM Corp. 2011, 2012 1

||

||

|
|
|

|

|

2 Parallel Environment Runtime Edition: PAMI Programming Guide

Chapter 2. PAMI subroutines

The parallel active messaging interface (PAMI) component of Parallel Environment
Runtime Edition includes several subroutines that are available for parallel
programming.

© Copyright IBM Corp. 2011, 2012 3

PAMI_AMCollective_dispatch_set
Purpose

Initializes the dispatch functions for a dispatch ID.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_AMCollective_dispatch_set(pami_context_t context,
pami_algorithm_t algorithm,
size_t dispatch,
pami_dispatch_callback_function fn,
void * cookie,
pami_collective_hint_t options
);

Fortran synopsis

include ’pamif.h’

pami_amcollective_dispatch_set(context, algorithm, dispatch, fn, cookie, options, ierror)
integer context
integer algorithm
integer dispatch
integer fn
integer cookie
integer options
integer ierror

Parameters

Input

context Specifies the communication context.

algorithm
Specifies the active messaging collective to use to set the dispatch.

dispatch
Specifies the dispatch identifier to initialize.

fn Specifies the dispatch receive function.

cookie Specifies the dispatch function cookie.

options Specifies the dispatch registration assertions.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: local, non-collective

Use this subroutine to initialize the dispatch functions for a dispatch ID.

4 Parallel Environment Runtime Edition: PAMI Programming Guide

Restrictions

There is no communication between tasks.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: ambcast.c

Subroutines: PAMI_Dispatch_set

Chapter 2. PAMI subroutines 5

PAMI_Client_create
Purpose

Initializes the PAMI runtime library for a client program.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Client_create(const char *name,
pami_client_t *client,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_client_create(name, client, configuration, num_configs, ierror)
integer name
integer client
integer configuration
integer num_configs
integer ierror

Parameters

Input

name Specifies a unique PAMI client name.

configuration
Specifies objects for the client.

num_configs
Specifies the number of configuration elements.

Output

client Specifies an opaque client object.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to initialize the PAMI runtime library for a client program.

A PAMI client represents a collection of resources to enable network
communication. Each PAMI client that is initialized is unque and does not
communicate directly with other clients. This allows middleware to be developed
independently. An application can use various middleware concurrently. Resources
are allocated and assigned at client creation time.

6 Parallel Environment Runtime Edition: PAMI Programming Guide

A PAMI client program is any software that calls a PAMI function. This includes
applications, libraries, and other middleware. Some sample client names include:
ARMCI, MPI, and UPC.

Client creation can be a synchronizing event, but it is not required to be
implemented as a synchonizing event. Application code must not make any
assumption about synchronization during client creation, and therefore must create
clients in the same order in all processes of the job.

A communication context must be created before any data transfer functions can
be called.

Return values

PAMI_SUCCESS
The client has been successfully created.

PAMI_INVAL
The client name has been rejected by the runtime library. This happens
when a job scheduler requires the client name to match what is in the job
description.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, advance.c, create.c, default-send.c, default-send-1.c,
eager_concurrency.c, endpoint_table.c, hello.c, immediate_send_overflow.c, init.c,
lock.c, long-header.c, long-header-matrix.c, multi-advance.c, multi-create.c,
post-multithreaded-perf.c, post-multithreaded.c, post.c, rdma-matrix.c,
send_flood_perf.c, send_to_self.c, send_to_self_immed.c, send_to_self_perf.c,
send_unexpected_func.c, shmem-matrix.c, simple_get_func.c, simple_put_func.c,
simple_rget_func.c, simple_rput_func.c, tick.c, time.c, timebase.c

Subroutines: PAMI_Client_destroy, PAMI_Client_query, PAMI_Client_update,
PAMI_Context_createv

Chapter 2. PAMI subroutines 7

PAMI_Client_destroy
Purpose

Finalizes the PAMI runtime library for a client program.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Client_destroy(pami_client_t *client
);

Fortran synopsis

include ’pamif.h’

pami_client_destroy(client, ierror)
integer client
integer ierror

Parameters

Input

client Specifies a client handle.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to finalize the PAMI runtime library for a client program. The
client handle will be changed to a non-valid value so that it is clearly destroyed.

Restrictions

Calling any PAMI subroutines after this subroutine, using the client handle from
any thread, is not recommended.

Return values

PAMI_SUCCESS
The client has been successfully destroyed.

PAMI_INVAL
The client is not valid, that is, it has already been destroyed.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

8 Parallel Environment Runtime Edition: PAMI Programming Guide

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, advance.c, create.c, default-send-1.c, default-send.c,
eager_concurrency.c, endpoint_table.c, hello.c, immediate_send_overflow.c, init.c,
lock.c, long-header-matrix.c, long-header.c, multi-advance.c, multi-create.c,
post-multithreaded-perf.c, post-multithreaded.c, post.c, rdma-matrix.c,
send_flood_perf.c, send_to_self.c, send_unexpected_func.c, shmem-matrix.c,
simple_get_func.c, simple_put_func.c, simple_rget_func.c, simple_rput_func.c

Subroutines: PAMI_Client_create, PAMI_Client_query, PAMI_Client_update

Chapter 2. PAMI subroutines 9

PAMI_Client_query
Purpose

Queries the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Client_query(pami_client_t *client,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_client_query(client, configuration, num_configs, ierror)
integer client
integer configuration
integer num_configs
integer ierror

Parameters

Input

client Specifies the PAMI client.

num_configs
Specifies the number of configuration elements.

Input/output

configuration
Specifies the configuration attribute to query.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to query the value of a configuration attribute.

Return values

PAMI_SUCCESS
The query has completed successfully.

PAMI_INVAL
The query has failed due to non-valid parameters.

10 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, bcast_subcomm2.c, default-send-1.c, default-send-nplus1.c,
default-send.c, eager_concurrency.c, endpoint_table.c, immediate_send_overflow.c,
init.c, long-header-hard-match.c, long-header-hard-opp.c, long-header-matrix.c,
long-header.c, multi-advance.c, multi-create.c, post-multithreaded-perf.c,
post-multithreaded.c, post.c, rdma-matrix.c, send_flood_perf.c, send_to_self.c,
send_to_self_immed.c, send_to_self_perf.c, send_unexpected_func.c,
shmem-matrix.c, simple_get_func.c, simple_put_func.c, simple_rget_func.c,
simple_rput_func.c, tick.c

Subroutines: PAMI_Client_create, PAMI_Client_destroy, PAMI_Client_update

Chapter 2. PAMI subroutines 11

PAMI_Client_update
Purpose

Updates the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Client_update(pami_client_t *client,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_client_update(client, configuration, num_configs, ierror)
integer client
integer configuration
integer num_configs
integer ierror

Parameters

Input

client Specifies the PAMI client.

configuration
Specifies the configuration attribute to update.

num_configs
Specifies the number of configuration elements.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to update the value of a configuration attribute.

Return values

PAMI_SUCCESS
The update has completed successfully.

PAMI_INVAL
The update has failed due to non-valid parameters. This failure occurs if
the subroutine tries to update a read-only attribute, for example.

12 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Client_create, PAMI_Client_destroy, PAMI_Client_query

Chapter 2. PAMI subroutines 13

PAMI_Collective
Purpose

Serves as a wrapper function for PAMI operations that are related to collective
communication.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Collective(pami_context_t context,
pami_xfer_t *cmd
);

typedef void* pami_context_t;

typedef struct pami_xfer_t
{

pami_event_function cb_done;
void *cookie;
pami_algorithm_t algorithm;
pami_collective_hint_t options;
pami_collective_t cmd;

} pami_xfer_t;

Fortran synopsis

include ’pamif.h’

pami_collective(context, cmd, ierror)
integer context
integer cmd
integer ierror

Parameters

Input

context Specifies the communication context.

Output

cmd Specifies the command type value.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

This subroutine is used for several different operations, which are indicated by the
transfer type values in the pami_collective_t data structure. The pami_collective_t
data structure is defined as:

{
pami_allreduce_t xfer_allreduce;
pami_broadcast_t xfer_broadcast;

14 Parallel Environment Runtime Edition: PAMI Programming Guide

pami_reduce_t xfer_reduce;
pami_allgather_t xfer_allgather;
pami_allgatherv_t xfer_allgatherv;
pami_allgatherv_int_t xfer_allgatherv_int;
pami_scatter_t xfer_scatter;
pami_scatterv_t xfer_scatterv;
pami_scatterv_int_t xfer_scatterv_int;
pami_gather_t xfer_gather;
pami_gatherv_t xfer_gatherv;
pami_gatherv_int_t xfer_gatherv_int;
pami_alltoall_t xfer_alltoall;
pami_alltoallv_t xfer_alltoallv;
pami_alltoallv_int_t xfer_alltoallv_int;
pami_ambroadcast_t xfer_ambroadcast;
pami_amscatter_t xfer_amscatter;
pami_amgather_t xfer_amgather;
pami_amreduce_t xfer_amreduce;
pami_scan_t xfer_scan;
pami_barrier_t xfer_barrier;
pami_reduce_scatter_t xfer_reduce_scatter;
} pami_collective_t;

Though the pami_xfer_t structure applies only to the C version of
PAMI_Collective, Table 4 includes the Fortran equivalents of the C datatypes.

Table 4 lists the values of the pami_xfer_type_t structure for C and the explicit
transfer types and values for Fortran.

Table 4. PAMI_Collective structure types

Transfer type, value of transfer type
(C)

Enumeration member as
interpreted by
PAMI_Collective (C) Transfer types and values (Fortran)

xfer_broadcast,
PAMI_XFER_BROADCAST

pami_broadcast_t integer PAMI_XFER_BROADCAST, parameter
(PAMI_XFER_BROADCAST=0)

xfer_allreduce,
PAMI_XFER_ALLREDUCE

pami_allreduce_t integer PAMI_XFER_ALLREDUCE, parameter
(PAMI_XFER_ALLREDUCE=1)

xfer_reduce, PAMI_XFER_REDUCE pami_reduce_t integer PAMI_XFER_REDUCE, parameter
(PAMI_XFER_REDUCE=2)

xfer_allgather,
PAMI_XFER_ALLGATHER

pami_allgather_t integer PAMI_XFER_ALLGATHER, parameter
(PAMI_XFER_ALLGATHER=3)

xfer_allgatherv,
PAMI_XFER_ALLGATHERV

pami_allgatherv_t integer PAMI_XFER_ALLGATHERV, parameter
(PAMI_XFER_ALLGATHERV=4)

xfer_allgatherv_int,
PAMI_XFER_ALLGATHERV_INT

pami_allgatherv_int_t integer PAMI_XFER_ALLGATHERV_INT,
parameter (PAMI_XFER_ALLGATHERV_INT=5)

xfer_scatter, PAMI_XFER_SCATTER pami_scatter_t integer PAMI_XFER_SCATTER, parameter
(PAMI_XFER_SCATTER=6)

xfer_scatterv,
PAMI_XFER_SCATTERV

pami_scatterv_t integer PAMI_XFER_SCATTERV, parameter
(PAMI_XFER_SCATTERV=7)

xfer_scatterv_int,
PAMI_XFER_SCATTERV_INT

pami_scatterv_int_t integer PAMI_XFER_SCATTERV_INT, parameter
(PAMI_XFER_SCATTERV_INT=8)

xfer_gather, PAMI_XFER_GATHER pami_gather_t integer PAMI_XFER_GATHER, parameter
(PAMI_XFER_GATHER=9)

xfer_gatherv,
PAMI_XFER_GATHERV

pami_gatherv_t integer PAMI_XFER_GATHERV, parameter
(PAMI_XFER_GATHERV=10)

xfer_gatherv_int,
PAMI_XFER_GATHERV_INT

pami_gatherv_int_t integer PAMI_XFER_GATHERV_INT, parameter
(PAMI_XFER_GATHERV_INT=11)

Chapter 2. PAMI subroutines 15

Table 4. PAMI_Collective structure types (continued)

Transfer type, value of transfer type
(C)

Enumeration member as
interpreted by
PAMI_Collective (C) Transfer types and values (Fortran)

xfer_barrier, PAMI_XFER_BARRIER pami_barrier_t integer PAMI_XFER_BARRIER, parameter
(PAMI_XFER_BARRIER=12)

xfer_fence, PAMI_XFER_FENCE pami_fence_t integer PAMI_XFER_FENCE, parameter
(PAMI_XFER_FENCE=13)

xfer_alltoall,
PAMI_XFER_ALLTOALL

pami_alltoall_t integer PAMI_XFER_ALLTOALL, parameter
(PAMI_XFER_ALLTOALL=14)

xfer_alltoall,
PAMI_XFER_ALLTOALL

pami_alltoall_t integer PAMI_XFER_ALLTOALL, parameter
(PAMI_XFER_ALLTOALL=14)

xfer_alltoallv,
PAMI_XFER_ALLTOALLV

pami_alltoallv_t integer PAMI_XFER_ALLTOALLV, parameter
(PAMI_XFER_ALLTOALLV=15)

xfer_alltoallv_int,
PAMI_XFER_ALLTOALLV_INT

pami_alltoallv_int_t integer PAMI_XFER_ALLTOALLV_INT,
parameter (PAMI_XFER_ALLTOALLV_INT=16)

xfer_scan, PAMI_XFER_SCAN pami_scan_t integer PAMI_XFER_SCAN, parameter
(PAMI_XFER_SCAN=17)

xfer_reduce_scatter,
PAMI_XFER_REDUCE_SCATTER

pami_reduce_scatter_t integer PAMI_XFER_REDUCE_SCATTER,
parameter
(PAMI_XFER_REDUCE_SCATTER=18)

xfer_ambroadcast,
PAMI_XFER_AMBROADCAST

pami_ambroadcast_t integer PAMI_XFER_AMBROADCAST,
parameter (PAMI_XFER_AMBROADCAST=19)

xfer_amscatter,
PAMI_XFER_AMSCATTER

pami_amscatter_t integer PAMI_XFER_AMSCATTER, parameter
(PAMI_XFER_AMSCATTER=20)

xfer_amgather,
PAMI_XFER_AMGATHER

pami_amgather_t integer PAMI_XFER_AMGATHER, parameter
(PAMI_XFER_AMGATHER=21)

xfer_amreduce,
PAMI_XFER_AMREDUCE

pami_amreduce_t integer PAMI_XFER_AMREDUCE, parameter
(PAMI_XFER_AMREDUCE=22)

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

pami_allreduce_t details

Use the pami_allreduce_t data structure to create and post a non-blocking
allreduce operation.
typedef struct

{
char *sndbuf;
pami_type_t stype;
size_t stypecount;
char *rcvbuf;

16 Parallel Environment Runtime Edition: PAMI Programming Guide

pami_type_t rtype;
size_t rtypecount;
pami_data_function op;
void *data_cookie;
int commutative;

} pami_allreduce_t;

Parameters
[in] cb_done Callback to invoke when message is complete
[in] geometry Geometry to use for this collective operation
[in] sbuffer Source buffer
[in] stype Source buffer type and datatype of the operation
[in] stypecount Source buffer type count
[in] rbuffer Receive buffer
[in] rtype Receive buffer layout
[in] rtypecount Receive buffer type count
[in] op Reduce operation

Return codes

0 The operation has completed successfully.

pami_broadcast_t details

Use the pami_broadcast_t data structure to create and post a non-blocking
broadcast operation.
typedef struct

{
pami_endpoint_t root;
char * buf;
pami_type_t type;
size_t typecount;

} pami_broadcast_t;

Parameters
[in] root Endpoint of the node performing the broadcast
[in] buf Source buffer to broadcast on root, destination buffer on non-root
[in] type Data type layout (might be different on root and destinations)
[in] count Single type replication count

Return codes

0 The operation has completed successfully.

pami_reduce_t details

Use the pami_reduce_t data structure to create and post a non-blocking reduce
operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;
pami_data_function op;
void * data_cookie;
int commutative;

} pami_reduce_t;

Chapter 2. PAMI subroutines 17

Parameters
[in] root Endpoint of the reduce root
[in] sndbuf Source buffer
[in] stype Source buffer type and datatype of the operation
[in] stypecount Source buffer type count
[in] rcvbuf Receive buffer
[in] rtype Receive buffer layout
[in] rtypecount Receive buffer type count
[in] op Reduce operation

Return codes

0 The operation has completed successfully.

pami_allgather_t details

Use the pami_allgather_t data structure to create and post a non-blocking allgather
operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_allgather_t;

Parameters
[in] cb_done Callback to invoke when message is complete
[in] geometry Geometry to use for this collective operation
[in] src Source buffer to send
[in] stype Data layout of send buffer
[in] stypecount Replication count of the type
[in] rcv Source buffer to receive the data
[in] rtype Data layout of each receive buffer
[in] rtypecount Replication count of the type

Return codes

0 The operation has completed successfully.

pami_allgatherv_t details

Use the pami_allgatherv_t data structure to create and post a non-blocking
allgatherv operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t * rtypecounts;
size_t * rdispls;

} pami_allgatherv_t;

Parameters
[in] cb_done Callback to invoke when message is complete
[in] geometry Geometry to use for this collective operation
[in] sndbuf The base address of the buffers containing data to be sent

18 Parallel Environment Runtime Edition: PAMI Programming Guide

[in] stype A single type datatype
[in] stypecount Type replication count
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Return codes

0 The operation has completed successfully.

pami_allgatherv_int_t details

Use the pami_allgatherv_int_t data structure to create and post a non-blocking
allgatherv operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
int stypecount;
char * rcvbuf;
pami_type_t rtype;
int * rtypecounts;
int * rdispls;

} pami_allgatherv_int_t;

Parameters
[in] cb_done Callback to invoke when message is complete
[in] geometry Geometry to use for this collective operation
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecount Type replication count
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Return codes

0 The operation has completed successfully.

pami_scatter_t details

Use the pami_scatter_t data structure to create and post a non-blocking scatter
operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_scatter_t;

Parameters
[in] root Endopint of the reduce root node
[in] sndbuf Source buffer
[in] stype Source buffer type
[in] stypecount Source buffer type count

Chapter 2. PAMI subroutines 19

[in] rcvbuf Receive buffer
[in] rtype Receive buffer layout
[in] rtypecount Receive buffer type count

Return codes

0 The operation has completed successfully.

pami_scatterv_t details

Use the pami_scatterv_t data structure to create and post a non-blocking scatterv
operation.

typedef struct
{

pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
size_t * stypecounts;
size_t * sdispls;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_scatterv_t;

Parameters
[in] root Endopint of the scatterv root node
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecounts An array of type replication counts (size of geometry length)
[in] sdispls Array of offsets into the sndbuf (size of geometry length)
[in] rbuffer Receive buffer
[in] rtype A single type datatype
[in] rtypecount Receive buffer type replication count

Return codes

0 The operation has completed successfully.

pami_scatterv_int_t details

Use the pami_scatterv_int_t data structure to create and post a non-blocking
scatterv operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
int * stypecounts;
int * sdispls;
char * rcvbuf;
pami_type_t rtype;
int rtypecount;

} pami_scatterv_int_t;

Parameters
[in] root Endopint of the scatterv_int root node
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecounts An array of type replication counts (size of geometry length)
[in] sdispls Array of offsets into the sndbuf (size of geometry length)

20 Parallel Environment Runtime Edition: PAMI Programming Guide

[in] rbuffer Receive buffer
[in] rtype A single type datatype
[in] rtypecount Receive buffer type replication count

Return codes

0 The operation has completed successfully.

pami_gather_t details

Use the pami_gather_t data structure to create and post a non-blocking gather
operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_gather_t;

Parameters
[in] root The root endpoint of the gather operation
[in] sndbuf Source buffer to send
[in] stype Data layout of send buffer
[in] stypecount Replication count of the type
[in] rcvbuf Source buffer to receive the data
[in] rtype Data layout of each receive buffer
[in] rtypecount Replication count of the type

Return codes

0 The operation has completed successfully.

pami_gatherv_t details

Use the pami_gatherv_t data structure to create and post a non-blocking gatherv
operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t * rtypecounts;
size_t * rdispls;

} pami_gatherv_t;

Parameters
[in] root The root endpoint for the gatherv operation
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecount Type replication count
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Chapter 2. PAMI subroutines 21

Return codes

0 The operation has completed successfully.

pami_gatherv_int_t details

Use the pami_gatherv_int_t data structure to create and post a non-blocking
gatherv operation.
typedef struct

{
pami_endpoint_t root;
char * sndbuf;
pami_type_t stype;
int stypecount;
char * rcvbuf;
pami_type_t rtype;
int * rtypecounts;
int * rdispls;

} pami_gatherv_int_t;

Parameters
[in] root The root endpoint for the gatherv operation
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecount Type replication count
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Return codes

0 The operation has completed successfully.

pami_alltoall_t details

Use the pami_alltoall_t data structure to create and post a non-blocking alltoall
operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_alltoall_t;

Parameters
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype Single datatype of the send buffer
[in] stypecount Single type replication count
[out] rbuf The base address of the buffer for data reception
[in] rtype Single datatype of the receive buffer
[in] rtypecount Single type replication count

Return codes

0 The operation has completed successfully.

22 Parallel Environment Runtime Edition: PAMI Programming Guide

pami_alltoallv_t details

Use the pami_alltoallv_t data structure to create and post a non-blocking alltoall
vector operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
size_t * stypecounts;
size_t * sdispls;
char * rcvbuf;
pami_type_t rtype;
size_t * rtypecounts;
size_t * rdispls;

} pami_alltoallv_t;

Parameters
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecounts An array of type replication counts (size of geometry length)
[in] sdispls Array of offsets into the sndbuf (size of geometry length)
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Return codes

0 The operation has completed successfully.

pami_alltoallv_int_t details

Use the pami_alltoallv_int_t data structure to create and post a non-blocking
alltoall vector operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
int * stypecounts;
int * sdispls;
char * rcvbuf;
pami_type_t rtype;
int * rtypecounts;
int * rdispls;

} pami_alltoallv_int_t;

Parameters
[in] sndbuf The base address of the buffers containing data to be sent
[in] stype A single type datatype
[in] stypecounts An array of type replication counts (size of geometry length)
[in] sdispls Array of offsets into the sndbuf (size of geometry length)
[out] rcvbuf The base address of the buffer for data reception
[in] rtype A single type datatype
[in] rtypecounts Array of type replication counts (size of geometry length)
[in] rdispls Array of offsets into the rcvbuf (size of geometry length)

Return codes

0 The operation has completed successfully.

Chapter 2. PAMI subroutines 23

pami_ambroadcast_t details

Use the pami_ambroadcast_t data structure to create and post a non-blocking
active message broadcast operation. This operation differs from LAPI_Amsend in
only one way: it takes geometry/team as an argument. The semantics are as
follows: the included header and data are broadcast to every place in the team.
The completion handler is called on the sending side as soon as send buffers can
be reused. On the receiving side, the usual two-phase reception protocol is run: a
header handler determines the address to which to deposit the data and sets the
address of a receive completion hander to be called once the data has arrived.
typedef struct

{
size_t dispatch;
void * user_header;
size_t headerlen;
void * sndbuf;
pami_type_t stype;
size_t stypecount;

} pami_ambroadcast_t;

Parameters
[in] dispatch Registered dispatch ID to use
[in] user_header Single metadata to send to destination in the header
[in] headerlen Length of the metadata (can be 0)
[in] src Base source buffer to broadcast
[in] stype Datatype of the send buffer
[in] stypecount Replication count of the send buffer datatype

Return codes

0 The operation has completed successfully.

pami_amscatter_t details

Use the pami_amscatter_t data structure to create and post a non-blocking active
message scatter operation. This operation is somewhat more complex than an
active message broadcast operation, because it allows different headers and data
buffers to be sent to everyone in the team.
typedef struct

{
size_t dispatch;
void * headers;
size_t headerlen;
void * sndbuf;
pami_type_t stype;
size_t stypecount;

} pami_amscatter_t;

Parameters
[in] dispatch Registered dispatch ID to use
[in] headers Array of metadata to send to destination
[in] headerlength Length of every header in the headers array
[in] src Base source buffer to scatter (size of geometry)
[in] stype Single datatype of the send buffer
[in] stypecount Replication count of the send buffer data type

Return codes

0 The operation has completed successfully.

24 Parallel Environment Runtime Edition: PAMI Programming Guide

pami_amgather_t details

Use the pami_amgather_t data structure to create and post a non-blocking active
message gather operation. This operation is the reverse of an active message scatter
operation. It works as follows: only the header is broadcast to the team. No data is
broadcast to the team. Each place in the team runs the header handler and points
to a data buffer in local space. A reverse transfer then takes place, in which the
buffer is sent from the receiver back to the sender, and deposited in one of the
buffers provided as part of the original call (the "data" parameter).
typedef struct

{
size_t dispatch;
void * headers;
size_t headerlen;
void * rcvbuf;
pami_type_t rtype;
size_t rtypecount;

} pami_amgather_t;

Parameters
[in] dispatch Registered dispatch ID to use
[in] headers Array of metadata to send to destination
[in] headerlen Length of every header in headers array
[in] rcvbuf Target buffer of the gather operation (size of geometry)
[in] rtype Data layout of the incoming gather
[in] rtypecount Replication count of the incoming gather
[in] cb_info Data done callback to call on completion

Return codes

0 The operation has completed successfully.

pami_amreduce_t details

Use the pami_amreduce_t data structure to create and post a non-blocking active
message reduce operation. This operation is fairly straightforward compared to an
active message gather operation. Instead of collecting the data without processing
it, all buffers are reduced using the operation and data type provided by the
sender. The final reduced data is deposited in the original buffer provided by the
initiator. On the receiving side, the algorithm can change the buffers provided by
the header handler, which might avoid having the implementor allocate more
memory for internal buffering.
typedef struct

{
size_t dispatch;
void * user_header;
size_t headerlen;
void * rcvbuf;
pami_type_t rtype;
size_t rtypecount;
pami_data_function op;
void * data_cookie;
int commutative;

} pami_amreduce_t;

Parameters
[in] dispatch Registered dispatch ID to use
[in] geometry Geometry to use for this collective operation

(Null indicates the global geometry)
[in] headers Metadata to send to destinations in the header

Chapter 2. PAMI subroutines 25

[in] rcvbuf Target buffer of the reduce operation (size of geometry)
[in] rtype Data layout of the incoming reduce
[in] rtypecount Replication count of the incoming reduce
[in] op Operation type

Return codes

0 The operation has completed successfully.

pami_scan_t details

Use the pami_scan_t data structure to create and post a non-blocking scan
operation.
typedef struct

{
char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t rtypecount;
pami_data_function op;
void * data_cookie;
int exclusive;

} pami_scan_t;

Parameters
[in] sndbuf Source buffer
[in] stype Source buffer type and datatype of the operation
[in] stypecount Source buffer type count
[in] rcvbuf Receive buffer
[in] rtype Receive buffer layout
[in] rtypecount Receive buffer type count
[in] op Reduce operation
[in] exclusive The scan operation is exclusive of the current node

Return codes

0 The operation has completed successfully.

pami_barrier_t details

Use the pami_barrier_t data structure to create and post a non-blocking barrier
operation.
typedef struct

{
} pami_barrier_t;

Parameters
geometry Geometry to use for this collective operation

[in] cb_done Callback to invoke when message is complete

Return codes

0 The operation has completed successfully.

pami_reduce_scatter_t details

Use the pami_reduce_scatter_t data structure to create and post a non-blocking
reduce scatter operation.

26 Parallel Environment Runtime Edition: PAMI Programming Guide

typedef struct
{

char * sndbuf;
pami_type_t stype;
size_t stypecount;
char * rcvbuf;
pami_type_t rtype;
size_t * rcounts;
pami_data_function op;
void * data_cookie;
int commutative;

} pami_reduce_scatter_t;

Parameters
[in] sndbuf Source buffer
[in] stype Source buffer type and datatype of the operation
[in] stypecount Source buffer type count
[in] rcvbuf Receive buffer
[in] rtype Receive buffer layout
[in] rtypecount Receive buffer type count
[in] rcounts Number of elements to receive from the destinations (common on all nodes)
[in] op Reduce operation

Return codes

0 The operation has completed successfully.

Chapter 2. PAMI subroutines 27

PAMI_Context_advance
Purpose

Advances the progress engine for a single communication context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_advance(pami_context_t context,
size_t maximum

);

Fortran synopsis

include ’pamif.h’

pami_context_advance (pami_context_t context, maximum, ierror)
integer context
integer maximum
integer ierror

Parameters

Input

context Specifies the communication context.

maximum
Specifies the maximum number of internal poll iterations.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: polling advance

Use this subroutine to advance the progress engine for a single communication
context.

This subroutine can complete zero, one, or more outbound transfers. It can call
dispatch handlers for incoming transfers. It can also call work event callbacks that
were previously posted to a communication context.

This subroutine will return after the first poll iteration that results in a processed
event, or, if no events are processed, after polling for the maximum number of
iterations.

Restrictions

This subroutine is not thread-safe. The application must make sure that only one
thread advances a context at any time.

28 Parallel Environment Runtime Edition: PAMI Programming Guide

Return values

PAMI_SUCCESS
An event has occurred and has been processed.

PAMI_EAGAIN
No event has occurred.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: advance.c, ambcast.c, bcast_subcomm.c, default-send-1.c,
default-send.c, immediate_send_overflow.c, init_coll.c, long-header-matrix.c,
long-header.c, multi-advance.c, post-multithreaded-perf.c, post-multithreaded.c,
post.c, rdma-matrix.c, send_flood_perf.c, send_to_self.c, send_to_self_immed.c,
send_to_self_perf.c, send_unexpected_func.c, shmem-matrix.c,
simple-send-immediate.c, simple_get_func.c, simple_put_func.c, simple_rget_func.c,
simple_rput_func.c

Subroutines: PAMI_Context_lock, PAMI_Context_trylock

Chapter 2. PAMI subroutines 29

PAMI_Context_advancev
Purpose

Advances the progress engine for multiple communication contexts.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_advancev(pami_context_t context[],
size_t count,
size_t maximum

);

Fortran synopsis

include ’pamif.h’

pami_context_advancev(pami_context_t context, count, maximum, ierror)
integer context
integer maximum
integer ierror

Parameters

Input

context Specifies an array of communication contexts.

count Specifies the number of communication contexts.

maximum
Specifies the maximum number of internal poll iterations on each context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: polling advance

Use this subroutine to advance the progress engine for multiple communication
contexts.

This subroutine complete zero, one, or more outbound transfers. It can call
dispatch handlers for incoming transfers. It can also call work event callbacks that
were previously posted to a communication context.

This subroutine will return after the first poll iteration that results in a processed
event on any context, or, if no events are processed, after polling for the maximum
number of iterations.

It is possible to define a set of communication contexts that are always advanced
together by any PAMI client thread. It is the responsibility of the PAMI client to

30 Parallel Environment Runtime Edition: PAMI Programming Guide

atomically lock the context set, perhaps by using the PAMI_Context_lock()
subroutine on a designated leader context, and to manage the PAMI client threads
to make sure that only one thread ever advances the set of contexts.

Restrictions

This subroutine is not thread-safe. The application must make sure that only one
thread advances the contexts at any time.

Return values

PAMI_SUCCESS
An event has occurred and has been processed.

PAMI_EAGAIN
No event has occurred.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, endpoint_table.c

Chapter 2. PAMI subroutines 31

PAMI_Context_createv
Purpose

Creates new, independent communication contexts for a client.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_createv(pami_client_t client,
pami_configuration_t configuration[],
size_t num_configs,
pami_context_t *context,
size_t ncontexts

);

Fortran synopsis

include ’pamif.h’
pami_context_createv(client, configuration, num_configs, context, ncontexts, ierror)
integer client
integer configuration
integer num_configs
integer context
integer ncontexts
integer ierror

Parameters

Input

client Specifies the client handle.

configuration
Specifies a list of configurable attributes and values.

num_configs
Specifies the number of configurations. The value can be 0.

ncontexts
Specifies the number of contexts to be created.

Output

context Specifies an array of communication contexts to initialize.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: local

Use this subroutine to create new, independent communication contexts for a
client.

Contexts are local "threading points" that an application may use to optimize
concurrent communcation operations. A context handle is an opaque object type

32 Parallel Environment Runtime Edition: PAMI Programming Guide

that the application must not directly read or write the value of the object.
Communication contexts have these features:
v Each context is a partition of the local resources assigned to the client object for

each task.
v Every context within a client has equivalent functionality and semantics.
v Communcation operations initiated by the local task will use the opaque

context object to identify the specific threading point that will be used to issue
the communication independent of communication occuring in other contexts.

v All local event callbacks associated with a communication operation will be
invoked by the thread which advances the context that was used to initiate the
operation.

v A context is a local object and is not used to directly address a communication
destination.

v Progress is driven independently among contexts.
v Progress may be driven concurrently among contexts, by using multiple

threads, as desired by the application.
v All contexts created by a client must be advanced by the application to prevent

deadlocks. This is the "all advance" rule.
v The rationale for the "all-advance" rule is that for a point-to-point send or a

collective operation, a communication is posted to a context, and delivered to a
context on a remote task. The internals of the messaging layer could implement
"horizontal" parallelism by injecting data or processing across multiple contexts
associated with the client. Consequently, data can be received across multiple
contexts. To guarantee progress of a single operation, every context must be
advanced by the user.

v The user application/client of pami may have more knowledge about the
communication patterns and the "all advance" rule can be relaxed. To do this the
user can specify special hints to disable "horizontal", or cross context parallelism.
See pami_send_hint_t and the "multicontext" option. This option must be
switched "off" to disable parallelization and the "all advance rule".

v The task based geometry constructor implies all contexts are included in the
geometry, with a single participant per task. All contexts must be advanced
during a collective operation. However, the user can specify special hints to
disable "horizontal", or cross context parallelsm. See pami_collective_hint_t and
the "multicontext" option. This option must be switched "off" to disable
parallelization and the "all advance rule".

The context configuration attributes can include such context optimizations as
shared memory and collective acceleration.

Context creation does not involve communication or syncronization with other
tasks.

Thread considerations

Applications map, or "apply", threading resources to contexts. Operations on
contexts are critical sections and are not thread-safe. The application must make
sure that critical sections are protected from re-entrant use. PAMI provides
mechanisms for controlling access to critical sections.

Return values

PAMI_SUCCESS
Contexts have been created.

Chapter 2. PAMI subroutines 33

PAMI_INVAL
The configuration could not be satisified or there were errors in other
parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C Examples adi.c, advance.c, create.c, default-send-1.c, default-send.c,
eager_concurrency.c, endpoint_table.c, immediate_send_overflow.c, init.c, lock.c,
long-header-matrix.c, long-header.c, multi-advance.c, multi-create.c,
post-multithreaded-perf.c, post-multithreaded.c, post.c, rdma-matrix.c,
send_flood_perf.c, send_to_self.c, send_to_self_immed.c, send_to_self_perf.c,
send_unexpected_func.c, shmem-matrix.c, simple_get_func.c, simple_put_func.c,
simple_rget_func.c, simple_rput_func.c, tick.c

34 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_destroyv
Purpose

Destroys the communication context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_destroyv (pami_context_t *contexts,
size_t ncontexts
);

Fortran synopsis

include ’pamif.h’

pami_context_destroyv (contexts, ncontexts, ierror)
integer contexts
integer ncontexts
integer ierror

Parameters

Input

ncontexts
Specifies the number of contexts in the list.

Input/output

contexts
Specifies the communication context list.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to destroy the communication context. The context handles will
be changed to an non-valid value so that they are clearly destroyed.

Restrictions

This subroutine is not thread-safe. The application must make sure that only one
thread destroys the communication contexts for a client.

The PAMI_Context_lock(), PAMI_Context_trylock(), and PAMI_Context_unlock()
subroutines must not be used to ensure thread-safe access to the context destroy
function, as the lock associated with each context will be destroyed.

Calling any PAMI subroutines after the context is destroyed, using the
communication context from any thread, is not recommended.

Chapter 2. PAMI subroutines 35

Return values

PAMI_SUCCESS
The contexts have been destroyed.

PAMI_INVAL
Some context is non-valid, that is, it has already been destroyed.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: advance.c, create.c, default-send-1.c, default-send.c, endpoint_table.c,
immediate_send_overflow.c, init.c, lock.c, long-header-matrix.c, long-header.c,
multi-advance.c, multi-create.c, post-multithreaded-perf.c, post-multithreaded.c,
post.c, rdma-matrix.c, send_to_self.c, shmem-matrix.c, simple_get_func.c,
simple_put_func.c, simple_rget_func.c, simple_rput_func.c

36 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_lock
Purpose

Acquires an atomic lock on a communication context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_lock(pami_context_t context
);

Fortran synopsis

include ’pamif.h’

pami_context_lock(context, ierror)
integer context
integer ierror

Parameters

Input

context Specifies the communication context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to acquire an atomic lock on a communication context.

Restrictions

The lock cannot be assumed to be recursive or non-recursive.

This subroutine will block until the lock is acquired.

Return values

PAMI_SUCCESS
The lock has been acquired.

PAMI_INVAL
The parameter is not valid.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 37

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: default-send-1.c, endpoint_table.c, lock.c, post.c, post-multithreaded.c,
post-multithreaded-perf.c

38 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_post
Purpose

Posts work to a context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_post(pami_context_t context,
pami_work_t *work,
pami_work_function fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_context_post(context, work, fn, cookie, ierror)
integer context
integer work
integer fn
integer cookie
integer ierror

Parameters

Input

context Specifies the communication context.

work Specifies the opaque storage for the work (used internally).

fn Specifies the event work function to call on the context.

cookie Specifies the opaque data pointer to pass to the work function.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to post work to a context. This subroutine is thread safe.

It is not required that the target context is locked, or otherwise reserved, by an
external atomic operation to ensure thread safety. The PAMI runtime library
performs any necessary atomic operations in order to post the work to the context.

The work function will be invoked in the thread that advances the target context.
There is no explicit completion notification provided to the posting thread when a
thread advancing the target context returns from the work function. If the posting
thread desires a completion notification it must explicitly program such
notifications, via the PAMI_Context_post() interface or other mechanism.

Chapter 2. PAMI subroutines 39

If this subroutine returns PAMI_SUCCESS, it may dispose of the pami_work_t
object (including re-posting) if it so chooses, provided arrangements were made to
pass the address of the pami_work_t object into the work function (using the
cookie, for example).

If this subroutine returns PAMI_EAGAIN, it must not have altered the
pami_work_t object in any way.

Return values

PAMI_SUCCESS
The work has been posted.

PAMI_INVAL
The post operation was rejected due to non-valid parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, post.c, post-multithreaded.c, post-multithreaded-perf.c

40 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_query
Purpose

Queries the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_query(pami_context_t context,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_context_query(context, configuration, num_configs, ierror)
integer context
integer configuration
integer num_configs
integer ierror

Parameters

Input

context Specifies the PAMI context.

num_configs
Specifies the number of configuration elements.

Input/output

configuration
Specifies the configuration attribute to query.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to query the value of an attribute.

Return values

PAMI_SUCCESS
The query has completed successfully.

PAMI_INVAL
The query has failed due to non-valid parameters.

Chapter 2. PAMI subroutines 41

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

42 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_trylock
Purpose

Tries to acquire an atomic lock on a communication context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_trylock(pami_context_t context
);

Fortran synopsis

include ’pamif.h’

pami_context_trylock(context, ierror)
integer context
integer ierror

Parameters

Input

context Specifies the communication context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to try to acquire an atomic lock on a communication context.

Restrictions

The lock cannot be assumed to be recursive or non-recursive.

Return values

PAMI_SUCCESS
The lock has been acquired.

PAMI_EAGAIN
The lock has not been acquired. Try again later.

PAMI_INVAL
The context is not valid.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

Chapter 2. PAMI subroutines 43

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

44 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_trylock_advancev
Purpose

Advances the progress engine for multiple communication contexts.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_trylock_advancev(pami_context_t context[],
size_t count,
size_t maximum

);

Fortran synopsis

include ’pamif.h’

pami_context_trylock_advancev(context, count, maximum, ierror)
integer context
integer count
integer maximum
integer ierror

Parameters

Input

context Specifies an array of communication contexts.

count Specifies the number of communication contexts.

maximum
Specifies the maximum umber of internal poll iterations. Users cannot
assume that events processed by other threads will cause this thread to
return before "maximum" loop iterations.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: polling advance

Use this thread-safe subroutine to advance the progress engine for multiple
communication contexts.

This subroutine can complete zero, one, or more outbound transfers. It can call
dispatch handlers for incoming transfers. It can also call work event callbacks
previously posted to a communication context.

This subroutine will return after the first poll iteration that results in a processed
event on any context, or if, no events are processed, after polling for the maximum
number of iterations.

Chapter 2. PAMI subroutines 45

Restrictions

This subroutine uses context locks for mutual exclusion. If you are using a
different system, this will not be thread-safe.

Return values

PAMI_SUCCESS
An event has occurred and been processed.

PAMI_EAGAIN
No event has occurred.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Context_lock, PAMI_Context_trylock

46 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_unlock
Purpose

Releases an atomic lock on a communication context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_unlock(pami_context_t context
);

Fortran synopsis

include ’pamif.h’

pami_context_unlock(context, ierror)
integer context
integer ierror

Parameters

Input

context Specifies the communication context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to release an atomic lock on a communication context.

Restrictions

The lock cannot be assumed to be recursive or non-recursive.

Return values

PAMI_SUCCESS
The lock has been released.

PAMI_INVAL
The parameter is not valid.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

Chapter 2. PAMI subroutines 47

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: default-send-1.c, endpoint_table.c, lock.c, post-multithreaded.c,
post-multithreaded-perf.c

48 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Context_update
Purpose

Updates the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Context_update(pami_context_t *context,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_context_update(context, configuration, num_configs, ierror)
integer context
integer configuration
integer num_configs
integer ierror

Parameters

Input

context Specifies the PAMI context.

configuration
Specifies the configuration attribute to update.

num_configs
Specifies the number of configuration elements.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to update the value of an attribute.

Return values

PAMI_SUCCESS
The update has completed successfully.

PAMI_INVAL
The update has failed due to non-valid parameters. This failure occurs if
the subroutine tries to update a read-only attribute, for example.

Chapter 2. PAMI subroutines 49

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

50 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Dispatch_query
Purpose

Queries the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Dispatch_query(pami_context_t context,
size_t dispatch,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_dispatch_query(context, dispatch, configuration, num_configs, ierror)
integer context
integer dispatch
integer configuration
integer num_configs
integer ierror

Parameters

Input

dispatch
Specifies the PAMI dispatch.

num_configs
Specifies the number of configuration elements.

Input/output

configuration
Specifies the configuration attribute to query.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to query the value of an attribute.

Return values

PAMI_SUCCESS
The query has completed successfully.

PAMI_INVAL
The query has failed due to non-valid parameters.

Chapter 2. PAMI subroutines 51

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: immediate_send_overflow.c, send_to_self_immed.c

Subroutines: PAMI_Dispatch_set, PAMI_Dispatch_update

52 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Dispatch_set
Purpose

Initializes the dispatch function for a dispatch identifier.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Dispatch_set(pami_context_t context,
size_t dispatch,
pami_dispatch_callback_function fn,
void * cookie,
pami_dispatch_hint_t options

);

Fortran synopsis

include ’pamif.h’

pami_dispatch_set(context, dispatch, fn, cookie, options, ierror)
integer context
integer dispatch
integer fn
integer cookie
integer options
integer ierror

Parameters

Input

context Specifies the communication context.

dispatch
Specifies the dispatch identifier to initialize.

fn Specifies the dispatch receive function.

cookie Specifies the dispatch function cookie.

options Specifies the dispatch registration assertions.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: local, non-collective

Use this subroutine to initialize the dispatch function for a dispatch identifier. The
maximum allowed dispatch identifier attribute,
PAMI_CONTEXT_DISPATCH_ID_MAX, can be queried with the configuration
interface.

Chapter 2. PAMI subroutines 53

Restrictions

There is no communication between tasks.

The user must not specify different hint assertions for the same client, context
offset, and dispatch identifier on different tasks. However, there is no specific error
check that will prevent specifying different hint assertions. The result of a
communication operation using mismatched hint assertions is undefined.

Related information

C examples: adi.c, default-send.c, default-send-1.c, endpoint_table.c,
immediate_send_overflow.c, long-header.c, long-header-matrix.c, rdma-matrix.c,
send_flood_perf.c, send_to_self.c, send_to_self_immed.c, send_to_self_perf.c,
send_unexpected_func.c, shmem-matrix.c, simple_get_func.c, simple_put_func.c,
simple_rget_func.c, simple_rput_func.c, simple-send-immediate.c

Subroutines: PAMI_AMCollective_dispatch_set, PAMI_Context_query,
PAMI_Dispatch_query, PAMI_Dispatch_update

54 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Dispatch_update
Purpose

Updates the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Dispatch_update(pami_context_t context,
size_t dispatch,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_dispatch_update(context, dispatch, configuration, num_configs, ierror)
integer context
integer dispatch
integer configuration
integer num_configs
integer ierror

Parameters

Input

context Specifies the communication context.

dispatch
Specifies the PAMI dispatch.

configuration
Specifies the configuration attribute to update.

num_configs
Specifies the number of configuration elements.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to update the value of an attribute.

Return values

PAMI_SUCCESS
The update has completed successfully.

PAMI_INVAL
The update has failed due to non-valid parameters. This failure occurs if
the subroutine tries to update a read-only attribute, for example.

Chapter 2. PAMI subroutines 55

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Dispatch_query, PAMI_Dispatch_set

56 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Endpoint_create
Purpose

Constructs an endpoint to address communication destinations.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Endpoint_create(pami_client_t client,
pami_task_t task,
size_t offset,
pami_endpoint_t *endpoint

);

Fortran synopsis

include ’pamif.h’

pami_endpoint_create(client,task, offset, endpoint, ierror)
integer client
integer task
integer offset
integer endpoint
integer ierror

Parameters

Input

client Specifies an opaque destination client object.

task Specifies an opaque destination task object.

Input/output

offset Specifies the destination context offset.

Output

endpoint
Specifies an opaque endpoint object to initialize.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to construct an endpoint to address communication
destinations.

Endpoints are opaque objects that are used to address a destination in a client and
are constructed from a client, task, and context offset:
v The client is required to disambiguate the task and context offset identifiers, as

these identifiers may be the same for multiple clients.
v The task is required to construct an endpoint to address the specific process that

contains the destination context.

Chapter 2. PAMI subroutines 57

v The context offset is required to identify the specific context on the destination
task. A context identifies a specific threading point on a task. The context offset
identifies which threading point will process the communication operation.

Point-to-point communication operations, such as send, put, and get, address a
destination with the opaque endpoint object. Collective communication operations
are addressed by an opaque geometry object.

Applications can write an endpoint table in shared memory to save storage in an
environment where multiple tasks of a client have access to the same shared
memory area. It is the application's responsibility to allocate this shared memory
area and coordinate the initialization and access of any shared data structures. This
includes any opaque endpoint objects that can be created by one task and read by
another task.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, bcast.c, bcast_subcomm.c, default-send-1.c, default-send.c,
endpoint_table.c, immediate_send_overflow.c, long-header-matrix.c, long-header.c,
rdma-matrix.c, scatter.c, scatterv.c, send_flood_perf.c, send_to_self.c,
send_to_self_immed.c, send_to_self_perf.c, send_unexpected_func.c,
shmem-matrix.c, simple-send-immediate.c, simple_get_func.c, simple_put_func.c,
simple_rget_func.c, simple_rput_func.c

Subroutines: PAMI_Endpoint_createv, PAMI_Endpoint_query

58 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Endpoint_query
Purpose

Retrieves the task and context offset that are associated with an endpoint.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Endpoint_query(pami_endpoint_t endpoint,
pami_task_t *task,
size_t *offset

);

Fortran synopsis

include ’pamif.h’

pami_endpoint_query(endpoint, task, offset, ierror)
integer endpoint
integer task
integer offset
integer ierror

Parameters

Input

endpoint
Specifies an opaque endpoint object.

Output

task Specifies an opaque destination task object.

offset Specifies the destination context offset.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to retrieve the task and context offset that are associated with
an endpoint. The endpoint must already have been initialized.

If needed to optimize performance, this subroutine can be replaced with a
generated macro that is specific to the installation platform.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

Chapter 2. PAMI subroutines 59

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: ambcast.c, endpoint_table.c

Subroutines: PAMI_Endpoint_create

60 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Error_text
Purpose

Provides a detailed description of the most recent PAMI result.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

size_t PAMI_Error_text(char *string,
size_t length
);

Fortran synopsis

include ’pamif.h’

pami_error_text(string, length, ierror)
integer string
integer length
integer ierror

Parameters

Input

string Specifies the character array to write the descriptive text.

length Specifies the length of the character array.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to provide a detailed description of the most recent PAMI
result. This result is specific to each thread. This subroutine returns the number of
characters written into the array.

PAMI implementations can provide translated (i18n) text.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 61

PAMI_Extension_close
Purpose

Closes an extension.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Extension_close(pami_extension_t extension
);

Fortran synopsis

include ’pamif.h’

pami_extension_close(extension, ierror)
integer extension
integer ierror

Parameters

Input

extension
Specifies the extension handle.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to close an extension.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Extension_open, PAMI_Extension_symbol

62 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Extension_open
Purpose

Opens an extension for use by a client.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Extension_open(pami_client_t client,
const char *name,
pami_extension_t *extension

);

Fortran synopsis

include ’pamif.h’

pami_extension_open(client, name, extension, ierror)
integer client
integer name
integer extension
integer ierror

Parameters

Input

client Specifies the client handle.

name Specifies the unique extension name.

Output

extension
Specifies the extension handle.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to open an extension for use by a client. The extension can also
be queried during compilation pre-processing using an #ifdef statement of the
form __pami_extension_name__. For example:

#ifdef __pami_extension_1234__

// Use the "1234" extension
#endif

Return values

PAMI_SUCCESS
The specified extension is available and is implemented by the PAMI
runtime library.

Chapter 2. PAMI subroutines 63

PAMI_ERROR
The specified extension was not initialized by the PAMI runtime library.

PAMI_UNIMPL
The specified extension is not implemented by the PAMI runtime library.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Extension_close, PAMI_Extension_symbol

64 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Extension_symbol
Purpose

Queries an extension symbol.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

void* PAMI_Extension_symbol(pami_extension_t extension,
const char *fn

);

Fortran synopsis

include ’pamif.h’

pami_extension_symbol (extension, fn, ierror)
integer extension
integer fn
integer ierror

Parameters

Input

extension
Specifies the extension handle.

fn Specifies the extension symbol name.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to query an extension symbol. If the requested extension is
available and implemented by the PAMI runtime library, this subroutine returns a
pointer to the extension symbol. This can be a function pointer which can be used
to call an extension function or a pointer to an extension variable. If the requested
extension is not available, this subroutine returns a value of Null (in C) or
PAMI_ADDR_NULL (in Fortran).

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 65

C example
typedef void (*pami_extension_1234_foo_fn) (pami_context_t context, size_t foo);
typedef void (*pami_extension_1234_bar_fn) (pami_context_t context, struct iovec ** iov);
typedef void pami_extension_1234_var_t;
pami_extension_1234_foo_fn pami_1234_foo =

(pami_extension_1234_foo_fn) PAMI_Extension_symbol ("pami_extension_1234", "foo");
pami_extension_1234_bar_fn pami_1234_bar =

(pami_extension_1234_bar_fn) PAMI_Extension_symbol ("pami_extension_1234", "bar");
pami_extension_1234_var_t * pami_1234_var =

(pami_extension_1234_var_t *) PAMI_Extension_symbol ("pami_extension_1234", "var");
pami_context_t context = ...;
pami_extension_1234_foo (context, 0);
struct iovec iov[1024];
pami_extension_1234_bar (context, &iov);
*var = 1234;

Related information

Subroutines: PAMI_Extension_close, PAMI_Extension_open

66 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Fence_all
Purpose

Synchronizes all transfers between all endpoints on a context.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Fence_all(pami_context_t context,
pami_event_function done_fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_fence_all(context, done_fn, cookie, ierror)
integer context
integer done_fn
integer cookie
integer ierror

Parameters

Input

context Specifies the communication context.

done_fn
Specifies the event callback to call when the fence operation is complete.

cookie Specifies the event callback argument.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to synchronize all transfers between all endpoints on a context.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 67

Related information

Subroutines: PAMI_Fence_begin, PAMI_Fence_end, PAMI_Fence_endpoint

68 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Fence_begin
Purpose

Begins a memory synchronization region.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Fence_begin(pami_context_t context
);

Fortran synopsis

include ’pamif.h’

pami_fence_begin(context, ierror)
integer context
integer ierror

Parameters

Input

context Specifies the PAMI communication context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to begin a memory synchronization region. A fence region is
an area of program control on the local task that is bounded by the
PAMI_Fence_begin() and PAMI_Fence_end() subroutines.

Restrictions

Do not call a fence operation outside of a fence region.

Do not begin a fence region inside an existing fence region. Fence regions cannot
be nested.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 69

Related information

Subroutines: PAMI_Fence_all, PAMI_Fence_end, PAMI_Fence_endpoint

70 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Fence_end
Purpose

Ends a memory synchronization region.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Fence_end(pami_context_t context
);

Fortran synopsis

include ’pamif.h’

pami_fence_end(context, ierror)
integer context
integer ierror

Parameters

Input

context Specifies the communication context.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to end a memory synchronization region. A fence region is an
area of program control on the local task that is bounded by the
PAMI_Fence_begin() and PAMI_Fence_end() subroutines.

Restrictions

Do not call a fence operation outside of a fence region.

Do not end a fence region outside of an existing fence region.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 71

Related information

Subroutines: PAMI_Fence_all, PAMI_Fence_begin, PAMI_Fence_endpoint

72 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Fence_endpoint
Purpose

Synchronizes all transfers to an endpoint.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Fence_endpoint(pami_context_t context,
pami_event_function done_fn,
void *cookie,
pami_endpoint_t target

);

Fortran synopsis

include ’pamif.h’

pami_fence_endpoint(context, done_fn, cookie, target, ierror)
integer context
integer done_fn
integer cookie
integer target
integer ierror

Parameters

Input

context Specifies the communication context.

done_fn
Specifies the event callback to call when the fence operation is complete.

cookie Specifies the event callback argument.

target Specifies the endpoint to synchronize.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to synchronize all transfers to an endpoint.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

Chapter 2. PAMI subroutines 73

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Fence_all, PAMI_Fence_begin, PAMI_Fence_end

74 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_algorithms_num
Purpose

Determines the number of algorithms available for a given operation in the
"always work" list and the "under certain conditions" list.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_algorithms_num(pami_geometry_t geometry,
pami_xfer_type_t coll_type,
size_t *lists_lengths
);

Fortran synopsis

include ’pamif.h’

pami_geometry_algorithms_num (geometry, coll_type, lists_lengths, ierror)
integer geometry
integer coll_type
integer lists_lengths
integer ierror

Parameters

Input

geometry
Specifies an input geometry to be analyzed.

coll_type
Specifies the type of collective operation.

Input/output

lists_lengths
Specifies an array of two numbers representing all valid algorithms and
optimized algorithms.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to determine the number of algorithms available for a given
operation in the "always work" list and the "under certain conditions" list.

Return values

PAMI_SUCCESS
The number of algorithms is determined.

Chapter 2. PAMI subroutines 75

PAMI_INVAL
There is an error with the input parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: bcast_subcomm2.c, init_coll.c

Subroutines: PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_create_taskrange, PAMI_Geometry_destroy,
PAMI_Geometry_query, PAMI_Geometry_update, PAMI_Geometry_world

76 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_algorithms_query
Purpose

Queries the protocols and attributes for a set of algorithms.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_algorithms_query(pami_geometry_t geometry,
pami_xfer_type_t coll_type,
pami_algorithm_t *algs0,
pami_metadata_t *mdata0,
size_t num0,
pami_algorithm_t *algs1,
pami_metadata_t *mdata1,
size_t num1

);

Fortran synopsis

include ’pamif.h’

pami_geometry_algorithms_query(geometry, coll_type, algs0, mdata0,
num0, algs1, mdata1, num1, ierror)

integer geometry
integer coll_type
integer algs0
integer mdata0
integer num0
integer algs1
integer mdata1
integer num1
integer ierror

Parameters

Input

coll_type
Specifies the type of collective operation.

num0 Specifies the number of algorithms to fill in.

num1 Specifies the number of algorithms to fill in.

Input/output

algs0 Specifies an array of algorithms to query.

mdata0 Specifies a metadata array to be filled in if the algorithms are applicable.
The value can be Null (in C) or PAMI_ADDR_NULL (in Fortran).

algs1 Specifies an array of algorithms to query.

mdata1 Specifies a metadata array to be filled in if the algorithms are applicable.
The value can be Null (in C) or PAMI_ADDR_NULL (in Fortran).

Output

Chapter 2. PAMI subroutines 77

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to fill in the protocols and attributes for a set of algorithms.
The first set of lists are used to populate collectives that work under any
condidtion. The second set of lists are used to populate collectives that the
metadata must be checked before use.

Return values

PAMI_SUCCESS
The algorithm is applicable to the geometry.

PAMI_INVAL
There is an error in the input arguments or the algorithm is not applicable
to the geometry.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: bcast_subcomm2.c, init_coll.c

Subroutines: PAMI_Geometry_algorithms_num, PAMI_Geometry_create_tasklist,
PAMI_Geometry_create_taskrange, PAMI_Geometry_destroy,
PAMI_Geometry_query, PAMI_Geometry_update, PAMI_Geometry_world

78 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_create_tasklist
Purpose

Initializes the geometry.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_create_tasklist (pami_client_t client,
size_t context_offset,
pami_configuration_t configuration[],
size_t num_configs,
pami_geometry_t *geometry,
pami_geometry_t parent,
unsigned id,
pami_task_t *tasks,
size_t task_count,
pami_context_t context,
pami_event_function fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_geometry_create_tasklist (client, context_offset, configuration, num_configs, geometry,
parent, id, tasks, task_count, context, fn, cookie, ierror)

integer client
integer context_offset
integer configuration
integer num_configs
integer geometry
integer parent
integer id
integer tasks
integer task_count
integer context
integer fn
integer cookie
integer ierror

Parameters

Input

client Specifies the PAMI client.

context_offset
Specifies the offset of the context to use for task-based collectives.

configuration
Specifies the list of configurable attributes and values.

num_configs
Specifies the number of configuration elements.

parent Specifies the parent geometry that contains all of the nodes in the task list.

Chapter 2. PAMI subroutines 79

id Specifies the identifier for this geometry that uniquely represents this
geometry (if tasks overlap).

tasks Specifies an array of tasks to build the geometry list. The user must keep
the task list in memory for the duration of the geometry's existence.

task_count
Specifies the number of tasks that are participating in the geometry.

context Specifies the context to which to deliver the asynchronous callback.

fn Specifies the event function to call when the geometry has been created.

cookie Specifies the user cookie to deliver with the callback.

Output

geometry
Specifies the opaque geometry object to initialize.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to initialize the geometry. A synchronizing operation takes
place during geometry_initialize on the parent geometry. If the output geometry's
geometry pointer has a value of Null (in C) or PAMI_ADDR_NULL (in Fortran), no
geometry is created. However, all nodes in the parent must participate in the
geometry_initialize operation, even if they do not create a geometry.

If a geometry is created without a parent geometry (the parent is set to
PAMI_NULL_GEOMETRY), an "immediate" geometry is created. In this case, the
new geometry is created and synchronized. However, the new geometry cannot
take advantage of optimized collectives from the parent in the creation of the new
geometry. This kind of geometry creation might not be as optimal as when a
parent has been provided.

A unique geometry ID is required to give each task described by a geometry a
unique communication context/channel to the other tasks in that geometry. Many
higher-level APIs have code to manage the creation of unique geometry IDs. PAMI
defers the unique geometry id assignment to these higher-level APIs.

This subroutine takes a context_offset into the array of contexts created at
PAMI_Context_createv. There may be more than one context created per task, so
this offset specifies a set of contexts that will be participating in the geometry. All
tasks in the create API must use the same context_offset. This effectively selects a
single endpoint (associated with this "primary" context) per task that will be a
participant in the collective communication.

Note that this does not effect the advance rules, which state that the user must
advance all contexts unless the multicontext hint is disabled for the collective
operation.

Restrictions

It is an error to post a collective via PAMI_Collective() to a context that is not
specified by the client/context_offset pair.

80 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_taskrange,
PAMI_Geometry_destroy, PAMI_Geometry_query, PAMI_Geometry_update,
PAMI_Geometry_world

Chapter 2. PAMI subroutines 81

PAMI_Geometry_create_taskrange
Purpose

Initializes the geometry.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_create_taskrange (pami_client_t client,
size_t context_offset,
pami_configuration_t configuration[],
size_t num_configs,
pami_geometry_t *geometry,
pami_geometry_t parent,
unsigned id,
pami_geometry_range_t *task_slices,
size_t slice_count,
pami_context_t context,
pami_event_function fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_geometry_create_taskrange (client, context_offset, configuration, num_configs, geometry,
parent, id, task_slices, slice_count, context, fn, cookie,
ierror)

integer client
integer context_offset
integer configuration
integer num_configs
integer geometry
integer parent
integer id
integer task_slices
integer slice_count
integer context
integer fn
integer cookie
integer ierror

Parameters

Input

client Specifies the PAMI client.

context_offset
Specifies the offset of the context to use for task-based collectives.

configuration
Specifies the list of configurable attributes and values.

num_configs
Specifies the number of configuration elements.

82 Parallel Environment Runtime Edition: PAMI Programming Guide

parent Specifies the parent geometry that contains all of the nodes in the task list.

id Specifies the identifier for this geometry that uniquely represents this
geometry (if tasks overlap).

task_slices
Specifies an array of node slices that are participating in the geometry. The
user must keep the array of slices in memory for the duration of the
geometry's existence.

slice_count
Specifies the number of task slices that are participating in the geometry.

context Specifies the context to which to deliver the asynchronous callback.

fn Specifies the event function to call when the geometry has been created.

cookie Specifies the user cookie to deliver with the callback.

Output

geometry
Specifies the opaque geometry object to initialize.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to initialize the geometry. A synchronizing operation takes
place during geometry_initialize on the parent geometry. If the output geometry's
geometry pointer has a value of Null (in C) or PAMI_ADDR_NULL (in Fortran), no
geometry is created. However, all nodes in the parent must participate in the
geometry_initialize operation, even if they do not create a geometry.

If a geometry is created without a parent geometry (the parent is set to
PAMI_NULL_GEOMETRY), an "immediate" geometry is created. In this case, the
new geometry is created and synchronized. However, the new geometry cannot
take advantage of optimized collectives from the parent in the creation of the new
geometry. This kind of geometry creation might not be as optimal as when a
parent has been provided.

A unique geometry ID is required to give each task described by a geometry a
unique communication context/channel to the other tasks in that geometry. Many
higher-level APIs have code to manage the creation of unique geometry IDs. PAMI
defers the unique geometry id assignment to these higher-level APIs.

This subroutine takes a context_offset into the array of contexts created at
PAMI_Context_createv. There may be more than one context created per task, so
this offset specifies a set of contexts that will be participating in the geometry. All
tasks in the create API must use the same context_offset. This effectively selects a
single endpoint (associated with this "primary" context) per task that will be a
participant in the collective communication.

Note that this does not effect the advance rules, which state that the user must
advance all contexts unless the multicontext hint is disabled for the collective
operation.

Chapter 2. PAMI subroutines 83

Restrictions

It is an error to post a collective via PAMI_Collective() to a context that is not
specified by the client/context_offset pair.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: bcast_subcomm2.c

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_destroy, PAMI_Geometry_query, PAMI_Geometry_update,
PAMI_Geometry_world

84 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_destroy
Purpose

Frees any memory allocated inside of a geometry.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_destroy(pami_client_t client,
pami_geometry_t *geometry,
pami_context_t context,
pami_event_function fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_geometry_destroy(client, geometry, context, fn, cookie, ierror)
integer client
integer geometry
integer context
integer fn
integer cookie
integer ierror

Parameters

Input

client Specifies the PAMI client.

geometry
Specifies the geometry object to free.

context Specifies the context to which to deliver the asynchronous callback.

fn Specifies the event function to call when the geometry has been destroyed.

cookie Specifies the user cookie to deliver with the callback.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: non-blocking

Use this subroutine to free any memory allocated inside of a geometry.

PAMI_Geometry_destroy frees any internal resources that are allocated during a
geometry create routine. This could involve synchronization with other tasks in the
geometry to free the resource, which would require that a callback be run before
completion. Synchronization with other tasks can not be assumed, however, as the

Chapter 2. PAMI subroutines 85

operation to free the geometry might be local only, and dependent on the
hardware and networks used for communication.

After the callback function has been called, the user is free to reuse the geometry
ID of the geometry that is being freed, subject to the geometry ID creation rules. It
is valid to assume the geometry has been destroyed in the callback function.

A valid client, geometry pointer, and context should be provided to this
subroutine. The event function can be Null, but the user cannot re-use the
geometry ID (provided to the geometry create routine) for the lifecycle of the
client. If the event function is Null, there is no way for the user to determine when
the resources can be reused.

The geometry handle will be changed to a non-valid value so that it is clearly
destroyed.

Restrictions

It is not valid to destroy geometry 0 (the world geometry).

Return values

PAMI_SUCCESS
The memory was freed.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_taskrange, PAMI_Geometry_query, PAMI_Geometry_update,
PAMI_Geometry_world

86 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_query
Purpose

Queries the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_query(pami_geometry_t geometry,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_geometry_query(geometry, configuration, num_configs, ierror)
integer geometry
integer configuration
integer num_configs
integer ierror

Parameters

Input

geometry
Specifies the PAMI geometry.

num_configs
Specifies the number of configuration elements.

Input/output

configuration
Specifies the configuration attribute to query.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to query the value of an attribute.

Return values

PAMI_SUCCESS
The query has completed successfully.

PAMI_INVAL
The query has failed due to non-valid parameters.

Chapter 2. PAMI subroutines 87

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_taskrange, PAMI_Geometry_destroy, PAMI_Geometry_update,
PAMI_Geometry_world

88 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_update
Purpose

Updates the value of an attribute.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_update(pami_geometry_t geometry,
pami_configuration_t configuration[],
size_t num_configs,
pami_context_t context,
pami_event_function fn,
void *cookie

);

Fortran synopsis

include ’pamif.h’

pami_geometry_update(geometry, configuration, num_configs, context, fn, cookie, ierror)
integer geometry
integer configuration
integer num_configs
integer context
integer fn
integer cookie
integer ierror

Parameters

Input

geometry
Specifies the PAMI geometry.

configuration
Specifies the configuration attribute to update.

num_configs
Specifies the number of configuration elements.

context Specifies the context to which to deliver the asynchronous callback.

fn Specifies the event function to call when the geometry has been created.

cookie Specifies the user cookie to deliver with the callback.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Chapter 2. PAMI subroutines 89

Use this subroutine to update the value of an attribute. The configuration variable
must be set collectively.

Restrictions

Changing a geometry configuration attribute could fundamentally alter the
geometry. Any saved knowledge (algorithm lists, for example) must be discarded
and re-queried after a call to this subroutine.

Return values

PAMI_SUCCESS
The update has completed successfully.

PAMI_INVAL
The update has failed due to non-valid parameters. This failure occurs if
the subroutine tries to update a read-only attribute, for example.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_taskrange, PAMI_Geometry_destroy, PAMI_Geometry_query,
PAMI_Geometry_world

90 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Geometry_world
Purpose

Returns a pointer to the world geometry.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Geometry_world (pami_client_t client,
pami_geometry_t *world_geometry

);

Fortran synopsis

include ’pamif.h’

pami_geometry_world (client, world_geometry, ierror)
integer client
integer world_geometry
integer ierror

Parameters

Input

client Specifies the PAMI client.

world_geometry
Specifies the world geometry object.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: collective communication

Use this subroutine to return a pointer to the "world geometry". The world
geometry is created at client creation time. It contains a representation of all the
tasks associated with the client.

The world geometry has a geometry ID of 0, which means that the PAMI user
should not create any new geometries using an ID of 0. This geometry represents
context offset 0 on all tasks in the current job.

The world geometry cannot be destroyed by the user, and is cleaned up at
PAMI_Client_destroy time.

The world geometry is scoped to the client object, meaning each client geometry
will have a world geometry associated with it.

Chapter 2. PAMI subroutines 91

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: bcast_subcomm2.c, init_coll.c

Subroutines: PAMI_Geometry_algorithms_num,
PAMI_Geometry_algorithms_query, PAMI_Geometry_create_tasklist,
PAMI_Geometry_taskrange, PAMI_Geometry_destroy, PAMI_Geometry_query,
PAMI_Geometry_update

92 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Get
Purpose

Performs a one-sided get operation for simple contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Get(pami_context_t context,
pami_get_simple_t *parameters
);

Fortran synopsis

include ’pamif.h’

pami_get(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the simple get input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a one-sided get operation for a simple contiguous
data transfer.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Chapter 2. PAMI subroutines 93

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: simple_get_func.c

Subroutines: PAMI_Get_typed, PAMI_Put, PAMI_Put_typed

94 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Get_typed
Purpose

Performs a one-sided get operation for typed non-contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Get_typed(pami_context_t context,
pami_get_typed_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_get_typed(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the PAMI communication context.

parameters
Specifies the typed get input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine perform a one-sided get operation for a typed non-contiguous
data transfer.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Chapter 2. PAMI subroutines 95

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Get, PAMI_Put, PAMI_Put_typed

96 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Memregion_create
Purpose

Creates a local memory region for one-sided operations.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Memregion_create(pami_context_t context,
void *address,
size_t bytes_in,
size_t *bytes_out,
pami_memregion_t *memregion
);

Fortran synopsis

include ’pamif.h’

pami_memregion_create(context, address, bytes_in, bytes_out, memregion, ierror)
integer context
integer address
integer bytes_in
integer bytes_out
integer memregion
integer ierror

Parameters

Input

context Specifies the communication context.

address Specifies the base virtual address of the memory region.

bytes_in
Specifies the number of bytes requested.

Output

bytes_out
Specifies the number of bytes granted.

memregion
Specifies the memory region object to initialize.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to create a local memory region for one-sided operations.
Using a send message, the local memory region can be transferred to a remote
task, so the remote task can perform one-sided operations with this local task. The
actual number of bytes pinned from the start of the buffer is returned in the
bytes_out parameter. The memory region must be freed using the
PAMI_Memregion_destroy() subroutine.

Chapter 2. PAMI subroutines 97

Memory regions can overlap. When one of the overlapping regions is destroyed,
any remaining overlapping memory regions are still usable.

If this subroutine fails, the memory region does not need to be freed using the
PAMI_Memregion_destroy() subroutine.

Return values

PAMI_SUCCESS
The entire memory region, or a portion of the memory region, was pinned.

PAMI_EAGAIN
The memory region was not pinned due to an unavailable resource.

PAMI_ERROR
The memory region was not pinned.

PAMI_INVAL
A non-valid parameter value was specified.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: simple_rget_func.c, simple_rput_func.c

Subroutines: PAMI_Memregion_destroy, PAMI_Rget, PAMI_Rget_typed,
PAMI_Rput, PAMI_Rput_typed

98 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Memregion_destroy
Purpose

Destroys a local memory region for one-sided operations.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Memregion_destroy(pami_context_t context,
pami_memregion_t *memregion
);

Fortran synopsis

include ’pamif.h’

pami_memregion_destroy(context, memregion, ierror)
integer context
integer memregion
integer ierror

Parameters

Input

context Specifies the communication context.

memregion
Specifies the memory region object to destroy.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to destroy a local memory region for one-sided operations. The
memory region object will be changed to an non-valid value so that it is clearly
destroyed.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 99

Related information

C examples: simple_rget_func.c, simple_rput_func.c

Subroutines: PAMI_Memregion_create, PAMI_Rget, PAMI_Rget_typed,
PAMI_Rput, PAMI_Rput_typed

100 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Purge
Purpose

Cleans up local resources to an endpoint in preparation for task shutdown or
checkpoint.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Purge(pami_context_t context,
pami_endpoint_t *dest,
size_t count

);

Fortran synopsis

include ’pamif.h’

pami_purge(context, dest, count, ierror)
integer context
integer dest
integer count
integer ierror

Parameters

Input

context Specifies the communication context.

dest Specifies an array of destination endpoints to which to close connections.

count Specifies the number of endpoints in the dest array.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to clean up local resources to an endpoint in preparation for
task shutdown or checkpoint. It is the user's responsibility to make sure that all
communication has been quiesced to and from the destination using a fence call
and synchronization.

Restrictions

It is not valid to specify the destination endpoint associated with the
communication context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

Chapter 2. PAMI subroutines 101

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Resume

102 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Put
Purpose

Performs a one-sided put operation for simple contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Put(pami_context_t context,
pami_put_simple_t *parameters
);

Fortran synopsis

include ’pamif.h’

pami_put(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the simple put input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a one-sided put operation for a simple contiguous
data transfer.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Chapter 2. PAMI subroutines 103

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: simple_put_func.c

Subroutines: PAMI_Get, PAMI_Get_typed, PAMI_Put_typed

104 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Put_typed
Purpose

Performs a one-sided put operation for typed non-contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Put_typed(pami_context_t context,
pami_put_typed_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_put_typed(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the typed put input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a one-sided put operation for a typed
non-contiguous data transfer.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Chapter 2. PAMI subroutines 105

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Get, PAMI_Get_typed, PAMI_Put

106 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Resume
Purpose

Sets up local resources to an endpoint in preparation for task restart or creation.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Resume(pami_context_t context,
pami_endpoint_t *dest,
size_t count

);

Fortran synopsis

include ’pamif.h’

pami_resume(context, dest, count, ierror)
integer context
integer dest
integer count
integer ierror

Parameters

Input

context Specifies the communication context.

dest Specifies an array of destination endpoints to which to resume connections.

count Specifies the number of endpoints in the dest array.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to set up local resources to an endpoint in preparation for task
restart or creation.

Restrictions

It is not valid to specify the destination endpoint associated with the
communication context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

Chapter 2. PAMI subroutines 107

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Purge

108 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Rget
Purpose

Performs a simple get operation for one-sided contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Rget(pami_context_t context,
pami_rget_simple_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_rget(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the structure of the input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a simple get operation for one-sided contiguous
data transfers.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

Chapter 2. PAMI subroutines 109

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: simple_rget_func.c

Subroutines: PAMI_Memregion_create, PAMI_Memregion_destroy,
PAMI_Rget_typed, PAMI_Rput, PAMI_Rput_typed

110 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Rget_typed
Purpose

Performs a get operation for datatype-specific one-sided data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Rget_typed(pami_context_t context,
pami_rget_typed_t *parameters
);

Fortran synopsis

include ’pamif.h’

pami_rget_typed(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the structure of the input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a get operation for datatype-specific one-sided data
transfers.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

Chapter 2. PAMI subroutines 111

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Memregion_create, PAMI_Memregion_destroy, PAMI_Rget,
PAMI_Rput, PAMI_Rput_typed

112 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Rmw
Purpose

Performs an atomic read-modify-write operation at a remote memory location.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Rmw(pami_context_t context,
pami_rmw_t *parameters

);

typedef struct
{

pami_endpoint_t dest; /* Destination endpoint */
pami_send_hint_t hints; /* Hints for sending the message */
void *cookie; /* Argument to all event callbacks */
pami_event_function done_fn; /* Atomic operation completion event */
void *local; /* Local (fetch) transfer virtual address */
void *remote; /* Remote (source) transfer virtual address */
void *value; /* Operation input local data value location */
void *test; /* Operation input local test value location */
pami_atomic_t operation; /* Read-modify-write operation */
pami_type_t type;

} pami_rmw_t;

Fortran synopsis

include ’pamif.h’

pami_rmw(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the read-modify-write input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to perform an atomic read-modify-write operation at a remote
memory location.

Chapter 2. PAMI subroutines 113

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

The following pami_type_t`types are valid for read-modify-write operations:
v PAMI_TYPE_SIGNED_INT
v PAMI_TYPE_UNSIGNED_INT
v PAMI_TYPE_SIGNED_LONG
v PAMI_TYPE_UNSIGNED_LONG
v PAMI_TYPE_SIGNED_LONG_LONG (only supported on 64-bit platforms)
v PAMI_TYPE_UNSIGNED_LONG_LONG (only supported on 64-bit platforms)

The pami_atomic_t`data structure follows:
typedef enum
{

PAMI_ATOMIC_FETCH = (0x1 << 0),
PAMI_ATOMIC_COMPARE = (0x1 << 1),
PAMI_ATOMIC_SET = (0x1 << 2),
PAMI_ATOMIC_ADD = (0x2 << 2),
PAMI_ATOMIC_OR = (0x3 << 2),
PAMI_ATOMIC_AND = (0x4 << 2),
PAMI_ATOMIC_XOR = (0x5 << 2),
PAMI_ATOMIC_FETCH_SET = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_SET),
PAMI_ATOMIC_FETCH_ADD = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_ADD),
PAMI_ATOMIC_FETCH_OR = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_OR),
PAMI_ATOMIC_FETCH_AND = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_AND),
PAMI_ATOMIC_FETCH_XOR = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_XOR),
PAMI_ATOMIC_COMPARE_SET = (PAMI_ATOMIC_COMPARE | PAMI_ATOMIC_SET),
PAMI_ATOMIC_COMPARE_ADD = (PAMI_ATOMIC_COMPARE | PAMI_ATOMIC_ADD),
PAMI_ATOMIC_COMPARE_OR = (PAMI_ATOMIC_COMPARE | PAMI_ATOMIC_OR),
PAMI_ATOMIC_COMPARE_AND = (PAMI_ATOMIC_COMPARE | PAMI_ATOMIC_AND),
PAMI_ATOMIC_COMPARE_XOR = (PAMI_ATOMIC_COMPARE | PAMI_ATOMIC_XOR),
PAMI_ATOMIC_FETCH_COMPARE_SET = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_COMPARE_SET),
PAMI_ATOMIC_FETCH_COMPARE_ADD = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_COMPARE_ADD),
PAMI_ATOMIC_FETCH_COMPARE_OR = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_COMPARE_OR),
PAMI_ATOMIC_FETCH_COMPARE_AND = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_COMPARE_AND),
PAMI_ATOMIC_FETCH_COMPARE_XOR = (PAMI_ATOMIC_FETCH | PAMI_ATOMIC_COMPARE_XOR),

} pami_atomic_t;

Restrictions

All read-modify-write operations are unordered relative to all other data transfer
operations, including other read-modify-write operations.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

114 Parallel Environment Runtime Edition: PAMI Programming Guide

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

C example
rmw.type=PAMI_TYPE_SIGNED_INT; rmw.operation=PAMI_ATOMIC_FETCH_AND

"32-bit signed integer fetch-then-and operation"

int *local, *remote, *value, *test;
*local = *remote; *remote &= *value;

rmw.type=PAMI_TYPE_UNSIGNED_LONG; rmw.operation=PAMI_ATOMIC_COMPARE_XOR
"native word sized signed integer compare-and-xor operation"

unsigned long *local, *remote, *value, *test;
(*remote == test) ? *remote ^= *value;

rmw.type=PAMI_TYPE_SIGNED_LONG_LONG; rmw.operation=PAMI_ATOMIC_FETCH_COMPARE_OR
"64-bit signed integer fetch-then-compare-and-or operation"

long long *local, *remote, *value, *test;
*local = *remote; (*remote == *test) ? *remote |= *value;

Chapter 2. PAMI subroutines 115

PAMI_Rput
Purpose

Performs a simple put operation for one-sided contiguous data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Rput(pami_context_t context,
pami_rput_simple_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_rput(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the structure of the input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a simple put operation for one-sided contiguous
data transfers.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

116 Parallel Environment Runtime Edition: PAMI Programming Guide

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: simple_rput_func.c

Subroutines: PAMI_Memregion_create, PAMI_Memregion_destroy, PAMI_Rget,
PAMI_Rget_typed, PAMI_Rput_typed

Chapter 2. PAMI subroutines 117

PAMI_Rput_typed
Purpose

Performs a put operation for datatype-specific one-sided data transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Rput_typed(pami_context_t context,
pami_rput_typed_t *parameters
);

Fortran synopsis

include ’pamif.h’

pami_rput_typed(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the structure of the input parameters.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication

Use this subroutine to perform a put operation for a datatype-specific one-sided
data transfer.

It is valid to specify the destination endpoint associated with the communication
context used to issue the operation.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

118 Parallel Environment Runtime Edition: PAMI Programming Guide

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Memregion_create, PAMI_Memregion_destroy, PAMI_Rget,
PAMI_Rget_typed, PAMI_Rput

Chapter 2. PAMI subroutines 119

PAMI_Send
Purpose

Performs an active message send operation for contiguous data.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Send(pami_context_t context,
pami_send_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_send(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the send simple parameter structure.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to perform an active message send operation for contiguous
data. A low-latency send operation can be enhanced by using a dispatch ID, which
is set with the pami_dispatch_hint_t::recv_immediate hint bit enabled. This hint
asserts that all receive operations with a dispatch ID will not exceed a certain limit.
The PAMI_DISPATCH_RECV_IMMEDIATE_MAX implementation configuration
attribute defines the maximum size of data buffers that can be completely received
with a single dispatch callback. Typically, this limit is associated with a network
resource attribute, such as a packet size.

The pami_send_immediate_t::dispatch identifier must be registered on the sending
context, using PAMI_Dispatch_set(), prior to the send operation.

It is valid to specify the endpoint associated with the communication context used
to issue the operation as the destination for the transfer.

120 Parallel Environment Runtime Edition: PAMI Programming Guide

It is safe for the application to deallocate, or otherwise alter, the pami_send_t
parameter structure after this function returns.

Restrictions

It is not safe for the application to deallocate, or otherwise alter, the memory
locations specified by pami_send_immediate_t::header and
pami_send_immediate_t::data until pami_send_event_t::local_fn is called.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, default-send.c, default-send-1.c, endpoint_table.c, long-header.c,
long-header-matrix.c, rdma-matrix.c, send_flood_perf.c, send_to_self.c,
send_to_self_perf.c, send_unexpected_func.c, shmem-matrix.c

Datatypes: pami_send_hint_t

Subroutines: PAMI_Dispatch_query, PAMI_Send_immediate, PAMI_Send_typed

Chapter 2. PAMI subroutines 121

PAMI_Send_immediate
Purpose

Performs an immediate active message send operation for small contiguous data.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Send_immediate(pami_context_t context,
pami_send_immediate_t *parameters

);

Fortran synopsis

include ’pamif.h’

pami_send_immediate(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the send parameter structure.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication (blocking)

Use this subroutine to perform an immediate active message send operation for
small contiguous data. A blocking send operation is only valid for small data
buffers. The PAMI_DISPATCH_SEND_IMMEDIATE_MAX implementation
configuration attribute defines the upper bounds for the size of data buffers,
including header data, that can be sent with this subroutine. This subroutine
returns an error if a data buffer larger than
PAMI_DISPATCH_SEND_IMMEDIATE_MAX is attempted.

This subroutine provides a low-latency send operation that can be optimized by
the specific PAMI implementation. If network resources are immediately available,
the send data will be injected directly into the network. If resources are not
available, the specific PAMI implementation can internally buffer the send
parameters and data until network resources are available to complete the transfer.
In either case, the send operation will return immediately, no "done" callback is
called, and the operation is considered complete.

122 Parallel Environment Runtime Edition: PAMI Programming Guide

The low-latency send operation can be further enhanced by using a dispatch ID,
which is set with the pami_dispatch_hint_t::recv_immediate hint bit enabled. This
hint asserts that all receive operations with a dispatch ID will not exceed a certain
limit.

The PAMI_DISPATCH_SEND_IMMEDIATE_MAX implementation configuration
attribute defines the maximum size of data buffers that can be completely received
with a single dispatch callback. Typically, this limit is associated with a network
resource attribute, such as a packet size.

The pami_send_immediate_t::dispatch identifier must be registered on the sending
context, using PAMI_Dispatch_set(), prior to the send operation.

It is valid to specify the endpoint associated with the communication context used
to issue the operation as the destination for the transfer.

It is safe for the application to deallocate, or otherwise alter, the the send
parameter structure and the memory locations specified by
pami_send_immediate_t::header and pami_send_immediate_t::data after this
function returns.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_EAGAIN
The request could not be satisfied due to unavailable network resources
and the request data could not be queued for later processing due to the
value of the pami_dispatch_hint_t::queue_immediate hint for this dispatch
identifier.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: adi.c, immediate_send_overflow.c, send_flood_perf.c,
send_to_self_immed.c, simple_get_func.c, simple_put_func.c, simple_rget_func.c,
simple_rput_func.c, simple-send-immediate.c,

Datatypes: pami_send_hint_t

Subroutines: PAMI_Dispatch_query, PAMI_Send, PAMI_Send_typed

Chapter 2. PAMI subroutines 123

PAMI_Send_typed
Purpose

Performs an active message send operation for non-contiguous typed data.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Send_typed(pami_context_t context,
pami_send_typed_t *parameters
);

Fortran synopsis

include ’pamif.h’

pami_send_typed(context, parameters, ierror)
integer context
integer parameters
integer ierror

Parameters

Input

context Specifies the communication context.

parameters
Specifies the send typed parameter structure.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Type of call: point-to-point communication (non-blocking)

Use this subroutine to perform an active message send operation for
non-contiguous typed data. This subroutine transfers data according to a
predefined data memory layout, or type, to the remote task. The data is transferred
as a byte stream that the remote task can receive in a different format, such as a
contiguous buffer, the same predefined type, or a different predefined type.

Return values

PAMI_SUCCESS
The request has been accepted.

PAMI_INVAL
The request has been rejected due to non-valid parameters.

124 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Send, PAMI_Send_immediate

Chapter 2. PAMI subroutines 125

PAMI_Type_add_simple
Purpose

Appends simple contiguous buffers to an existing type identifier.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_add_simple(pami_type_t type,
size_t bytes,
size_t offset,
size_t count,
size_t stride
);

Fortran synopsis

include ’pamif.h’

pami_type_add_simple(type, bytes, offset, count, stride, ierror)
integer type
integer bytes
integer offset
integer count
integer stride
integer ierror

Parameters

Input

bytes Specifies the number of bytes of each contiguous buffer.

offset Specifies the offset from the cursor to place the buffers.

count Specifies the number of buffers.

stride Specifies the stride between buffers.

Input/output

type Specifies the type identifier to be modified.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to append simple contiguous buffers to an existing type
identifier. A cursor, starting from 0, tracks the placement of buffers in a type. This
pseudocode places simple buffers:

126 Parallel Environment Runtime Edition: PAMI Programming Guide

cursor += offset;
while (count--) {

Put a contiguous buffer of bytes at the cursor;
cursor += stride;

}

If count is 0, this function simply moves the cursor. It is valid to move the cursor
forward or backward. It is also valid to place overlapping buffers in a type, but the
overlapping buffers hold undefined data when such a type is used in data
manipulation.

Return values

PAMI_SUCCESS
The buffers are added to the type.

PAMI_ENOMEM
Out of memory.

PAMI_INVAL
A completed type cannot be modified.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_typed, PAMI_Type_complete, PAMI_Type_create,
PAMI_Type_deserialize, PAMI_Type_destroy, PAMI_Type_query,
PAMI_Type_serialize, PAMI_Type_transform_data

Chapter 2. PAMI subroutines 127

PAMI_Type_add_typed
Purpose

Appends typed buffers to an existing type identifier.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_add_typed(pami_type_t type,
pami_type_t subtype,
size_t offset,
size_t count,
size_t stride
);

Fortran synopsis

include ’pamif.h’

pami_type_add_typed(type, subtype, offset, count, stride, ierror)
integer type
integer subtype
integer offset
integer count
integer stride
integer ierror

Parameters

Input

subtype
Specifies the type of each typed buffer.

offset Specifies the offset from the cursor to place the buffers.

count Specifies the number of buffers.

stride Specifies the stride between buffers.

Input/output

type Specifies the type identifier to be modified.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to append typed buffers to an existing type identifier. A cursor,
starting from 0, tracks the placement of buffers in a type. This pseudocode places
typed buffers:

128 Parallel Environment Runtime Edition: PAMI Programming Guide

cursor += offset;
while (count--) {

Put a typed buffer of subtype at the cursor;
cursor += stride;

}

The cursor movement in subtype has no impact to the cursor of type. If count is 0,
this function simply moves the cursor. It is valid to move the cursor forward or
backward. It is also valid to place overlapping buffers in a type but the
overlapping buffers hold undefined data when such a type is used in data
manipulation.

Restrictions

Do not append an incomplete type to another type.

Return values

PAMI_SUCCESS
The buffers are added to the type.

PAMI_ENOMEM
Out of memory.

PAMI_INVAL
A completed type cannot be modified or an incomplete subtype cannot be
added.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_complete, PAMI_Type_create,
PAMI_Type_deserialize, PAMI_Type_destroy, PAMI_Type_query,
PAMI_Type_serialize, PAMI_Type_transform_data

Chapter 2. PAMI subroutines 129

PAMI_Type_complete
Purpose

Completes the type identifier.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_complete(pami_type_t type,
size_t atom_size
);

Fortran synopsis

include ’pamif.h’

pami_type_complete(type, atom_size, ierror)
integer type
integer atom_size
integer ierror

Parameters

Input

type Specifies the type identifier to be completed.

atom_size
Specifies the atom size of the type.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to complete the type identifier. The atom size of a type must
divide the size of any contiguous buffer that is described by the type. An atom size
of 1 is valid for any type.

Restrictions

Do not modify a type layout after it has been completed.

Return values

PAMI_SUCCESS
The type is complete.

PAMI_INVAL
The atom size is not valid.

130 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed, PAMI_Type_create,
PAMI_Type_deserialize, PAMI_Type_destroy, PAMI_Type_query,
PAMI_Type_serialize, PAMI_Type_transform_data

Chapter 2. PAMI subroutines 131

PAMI_Type_create
Purpose

Creates a new type for noncontiguous transfers.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_create(pami_type_t *type
);

Fortran synopsis

include ’pamif.h’

pami_type_create(type, ierror)
integer type
integer ierror

Parameters

Input

Output

type Specifies the type identifier to be created.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to create a new type for a noncontiguous transfer.

Return values

PAMI_SUCCESS
The type is created.

PAMI_ENOMEM
Out of memory.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

132 Parallel Environment Runtime Edition: PAMI Programming Guide

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_deserialize, PAMI_Type_destroy,
PAMI_Type_query, PAMI_Type_serialize, PAMI_Type_transform_data

Chapter 2. PAMI subroutines 133

PAMI_Type_deserialize
Purpose

Reconstructs a new type from a serialized type object.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_deserialize(pami_type_t *type,
void *address,
size_t size

);

Fortran synopsis

include ’pamif.h’

pami_type_deserialize(type, address, size, ierror)
integer type
integer address
integer size
integer ierror

Parameters

Input

address Specifies the address of the serialized type object.

size Specifies the size of the serialized type object.

Output

type Specifies the type identifier to be created.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to reconstruct a new type from a serialized type object.
Successful reconstruction completes the new type. The new type does not depend
on the memory of the serialized type object. A reconstructed type can be destroyed
using the PAMI_Type_destroy subroutine.

Return values

PAMI_SUCCESS
The reconstruction is successful.

PAMI_ENOMEM
Out of memory.

PAMI_INVAL
The serialized type object is corrupted.

134 Parallel Environment Runtime Edition: PAMI Programming Guide

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_create, PAMI_Type_destroy, PAMI_Type_query,
PAMI_Type_serialize, PAMI_Type_transform_data

Chapter 2. PAMI subroutines 135

PAMI_Type_destroy
Purpose

Destroys a type.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_destroy(pami_type_t *type
);

Fortran synopsis

include ’pamif.h’

pami_type_destroy(type, ierror)
integer type
integer ierror

Parameters

Input

type Specifies the type identifier to be destroyed.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to destroy a type. The type handle is changed to a non-valid
value so that it is clearly destroyed.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_create, PAMI_Type_deserialize,
PAMI_Type_query, PAMI_Type_serialize, PAMI_Type_transform_data

136 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Type_query
Purpose

Queries the attributes of a type.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_query(pami_type_t *type,
pami_configuration_t configuration[],
size_t num_configs
);

Fortran synopsis

include ’pamif.h’

pami_type_query(type, configuration, num_configs, ierror)
integer type
integer configuration
integer num_configs
integer ierror

Parameters

Input

type Specifies the type to query.

configuration
Specifies the configuration attributes to query.

num_configs
Specifies the number of configuration elements.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to query the attributes of a type. The type being queried must
have completed.

Return values

PAMI_SUCCESS
The update has completed successfully.

PAMI_INVAL
The update has failed due to non-valid parameters.

Chapter 2. PAMI subroutines 137

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_create, PAMI_Type_deserialize,
PAMI_Type_destroy, PAMI_Type_serialize, PAMI_Type_transform_data

138 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Type_serialize
Purpose

Serializes a type.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_serialize(pami_type_t *type,
void **address,
size_t size
);

Fortran synopsis

include ’pamif.h’

pami_type_serialize(type, address, size, ierror)
integer type
integer address
integer size
integer ierror

Parameters

Input

type Specifies the type identifier to be serialized.

Output

address Specifies the address of the serialized type object.

size Specifies the size of the serialized type object.

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to serialize a type and retrieve the address and the size of a
serialized type object, which can be copied or transferred like normal data. A
serialized type object can be reconstructed into a type using the
PAMI_Type_deserialize subroutine. The serialization is internal to PAMI and not
into user-allocated memory. Serializing an already-serialized type retrieves the
address and the size of the serialized type object. A PAMI implementation can
choose to keep the internal representation of a type always serialized. Otherwise, it
needs to handle serialization while a type is in use.

Return values

PAMI_SUCCESS
The serialization is successful.

PAMI_ENOMEM
Out of memory.

Chapter 2. PAMI subroutines 139

PAMI_INVAL
The type is not valid.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_create, PAMI_Type_deserialize,
PAMI_Type_destroy, PAMI_Type_query, PAMI_Type_transform_data

140 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Type_transform_data
Purpose

Transforms typed data between buffers in the same address space.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

pami_result_t PAMI_Type_transform_data (void *src_addr,
pami_type_t src_type,
size_t src_offset,
void *dst_addr,
pami_type_t dst_type,
size_t dst_offset,
size_t size,
pami_data_function data_fn,
void *cookie
);

Fortran synopsis

include ’pamif.h’

pami_result_t PAMI_Type_transform_data (src_addr, src_type, src_offset, dst_addr, dst_type,
dst_offset, size, data_fn, cookie, ierror)

integer src_addr
integer src_type
integer src_offset
integer dst_addr
integer dst_type
integer dst_offset
integer size
integer data_fn
integer cookie
integer ierror

Parameters

Input

src_addr
Specifies the source buffer address.

src_type
Specifies the source datatype.

src_offset
Specifies the starting offset of the source datatype.

dst_addr
Specifies the destination buffer address.

dst_type
Specifies the destination datatype.

dst_offset
Specifies the starting offset of the destination datatype.

Chapter 2. PAMI subroutines 141

size Specifies the amount of data to transform.

data_fn
Specifies the function to transform the data.

cookie Specifies the argument to data function.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to transform typed data between buffers in the same address
space.

Return values

PAMI_SUCCESS
The operation has completed successfully.

PAMI_INVAL
The operation has failed due to non-valid parameters, that is, incomplete
types.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

Subroutines: PAMI_Type_add_simple, PAMI_Type_add_typed,
PAMI_Type_complete, PAMI_Type_create, PAMI_Type_deserialize,
PAMI_Type_destroy, PAMI_Type_query, PAMI_Type_serialize

142 Parallel Environment Runtime Edition: PAMI Programming Guide

PAMI_Wtime
Purpose

Returns an elapsed time on the calling processor.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

double PAMI_Wtime(pami_client_t client
);

Fortran synopsis

include ’pamif.h’

pami_wtime(client, ierror)
integer client
integer ierror

Parameters

Input

client Specifies the client handle.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to return an elapsed time on the calling processor. This
subroutine has the same definition as the MPI_Wtime subroutine. This subroutine
returns the time in seconds since an arbitrary time in the past.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: time.c

Subroutines: MPI_Wtime, PAMI_Wtimebase

Chapter 2. PAMI subroutines 143

PAMI_Wtimebase
Purpose

Returns the number of "cycles" that have elapsed on the calling processor.

Library

PAMI Runtime Library (libpami_r.a - AIX, libpami.so - Linux, libpamiudp.so -
Linux on UDP/IP)

C synopsis
#include <pami.h>

unsigned long long PAMI_Wtimebase(pami_client_t client
);

Fortran synopsis

include ’pamif.h’

pami_wtimebase(client, ierror)
integer client
integer ierror

Parameters

Input

client Specifies the client handle.

Output

ierror Specifies a Fortran return code. This is always the last parameter.

Description

Use this subroutine to return the number of "cycles" that have elapsed on the
calling processor. This subroutine returns the number of "cycles" since an arbitrary
time in the past. "Cycles" could be any quickly and continuously increasing
counter if true cycles are unavailable.

Location

/usr/lib/libpami_r.a (AIX)

/usr/lib/libpami.so (32-bit Linux)

/usr/lib/libpamiudp.so (32-bit Linux, UDP/IP)

/usr/lib64/libpami.so (64-bit, Linux)

/usr/lib64/libpamiudp.so (64-bit Linux, UDP/IP)

Related information

C examples: post-multithreaded-perf.c, send_flood_perf.c, send_to_self_immed.c,
send_to_self_perf.c, timebase.c

144 Parallel Environment Runtime Edition: PAMI Programming Guide

Subroutines: PAMI_Wtime

Chapter 2. PAMI subroutines 145

146 Parallel Environment Runtime Edition: PAMI Programming Guide

Chapter 3. PAMI environment variables

This appendix includes PE environment variables that apply to PAMI.

Table 5. Environment variables for MPICH2

Environment variable Set: Possible values Default value

PAMI_EAGER The cutoff for the switch to the
rendezvous protocol. This
environment variable switches
from the eager protocol to the
rendezvous protocol for
point-to-point messaging.
Increasing the limit could help
larger partitions, if most of the
communication is with the
closest neighbor.

nnnnn
nnK (where:
K = 1024 bytes)

4096

PAMI_RMA_PENDING The maximum number of
outstanding remote memory
access (RMA) requests. This
environment variable limits the
number of PAMI_Request
objects that are allocated by
MPI one-sided operations.

Any positive integer 1000

PAMI_RVZ The cutoff for the switch to the
rendezvous protocol. This is a
value, in bytes, to switch from
the eager protocol to the
rendezvous protocol for
point-to-point messaging.
Increasing the limit could help
for larger partitions and if most
of the communication is with
the closest neighbor.

nnnnn
nnK (where:
K = 1024 bytes)

4096

PAMI_RZV The cutoff for the switch to the
rendezvous protocol. This is a
value, in bytes, to switch from
the eager protocol to the
rendezvous protocol for
point-to-point messaging.
Increasing the limit could help
for larger partitions and if most
of the communication is with
the closest neighbor.

nnnnn
nnK (where:
K = 1024 bytes)

4096

PAMI_SHMEM_PT2PT To determine whether
intranode point-to-point
communication will use the
optimized shared memory
protocols.

no
yes

yes

© Copyright IBM Corp. 2011, 2012 147

148 Parallel Environment Runtime Edition: PAMI Programming Guide

Accessibility features for PE

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in PE:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers
v Keys that are discernible by touch but do not activate just by touching them
v Industry-standard devices for ports and connectors
v The attachment of alternative input and output devices

The IBM Cluster information center, and its related publications, are enabled for
accessibility. This information center's accessibility features are described under
Accessibility (http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/
com.ibm.cluster.addinfo.doc/access.html).

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

IBM and accessibility
See the IBM Human Ability and Accessibility Center (http://www.ibm.com/able)
for more information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 2011, 2012 149

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/topic/com.ibm.cluster.addinfo.doc/access.html
http://www.ibm.com/able

150 Parallel Environment Runtime Edition: PAMI Programming Guide

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte character set (DBCS) information,
contact the IBM Intellectual Property Department in your country or send
inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan Ltd.
1623-14, Shimotsuruma, Yamato-shi
Kanagawa 242-8502 Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:

INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION “AS IS” WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web

© Copyright IBM Corp. 2011, 2012 151

sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

For AIX:

IBM Corporation
Department LRAS, Building 003
11400 Burnet Road
Austin, Texas 78758–3498
U.S.A

For Linux:

IBM Corporation
Department LJEB/P905
2455 South Road
Poughkeepsie, NY 12601-5400
U.S.A

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurement may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the

152 Parallel Environment Runtime Edition: PAMI Programming Guide

names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. _enter the year or years_.

All implemented function in the PE MPI product is designed to comply with the
requirements of the Message Passing Interface Forum, MPI: A Message-Passing
Interface Standard. The standard is documented in two volumes, Version 1.1,
University of Tennessee, Knoxville, Tennessee, June 6, 1995 and MPI-2: Extensions to
the Message-Passing Interface, University of Tennessee, Knoxville, Tennessee, July 18,
1997. The second volume includes a section identified as MPI 1.2 with clarifications
and limited enhancements to MPI 1.1. It also contains the extensions identified as
MPI 2.0. The three sections, MPI 1.1, MPI 1.2 and MPI 2.0 taken together constitute
the current standard for MPI.

PE MPI provides full support for all of MPI 2.2.

If you believe that PE MPI does not comply with the MPI standard for the portions
that are implemented, please contact IBM Service.

Trademarks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information (http://www.ibm.com/legal/copytrade.shtml).

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Notices 153

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

Red Hat, the Red Hat "Shadow Man" logo, and all Red Hat-based trademarks and
logos are trademarks or registered trademarks of Red Hat, Inc., in the United
States and other countries.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

154 Parallel Environment Runtime Edition: PAMI Programming Guide

Glossary

This glossary defines technical terms used in the IBM Parallel Environment
documentation. If you do not find the term you are looking for, refer to the IBM
Terminology site on the World Wide Web (http://www.ibm.com/software/
globalization/terminology/index.html).

A

address
A unique code or identifier for a register, device, workstation, system, or
storage location.

API application programming interface (API): An interface that allows an
application program that is written in a high-level language to use specific
data or functions of the operating system or another program.

application
One or more computer programs or software components that provide a
function in direct support of a specific business process or processes.

argument
A value passed to or returned from a function or procedure at run time.

authentication
The process of validating the identity of a user or server.

authorization
The process of obtaining permission to perform specific actions.

B

bandwidth
A measure of frequency range, typically measured in hertz. Bandwidth also
is commonly used to refer to data transmission rates as measured in bits or
bytes per second.

blocking operation
An operation that has not completed until the operation either succeeds or
fails. For example, a blocking receive will not return until a message is
received or until the channel is closed and no further messages can be
received.

breakpoint
A place in a program, specified by a command or a condition, where the
system halts execution and gives control to the workstation user or to a
specified program.

broadcast
The simultaneous transmission of data to more than one destination.

C

C A programming language designed by Bell Labs in 1972 for use as the
systems language for the UNIX operating system.

C++ An enhancement of the C language that adds features supporting
object-oriented programming.

© Copyright IBM Corp. 2011, 2012 155

http://www.ibm.com/software/globalization/terminology/index.html

client A software program or computer that requests services from a server.

cluster
A group of processors interconnected through a high-speed network that
can be used for high-performance computing.

collective communication
A communication operation that involves more than two processes or
tasks. Broadcasts and reductions are examples of collective communication
operations. All tasks in a communicator must participate.

communicator
A Message Passing Interface (MPI) object that describes the communication
context and an associated group of processes.

compile
translate all or part of a program expressed in a high-level language into a
computer program expressed in an intermediate language, an assembly
language, or a machine language.

condition
One of a set of specified values that a data item can assume.

core dump
A process by which the current state of a program is preserved in a file.
Core dumps are usually associated with programs that have encountered
an unexpected, system-detected fault, such as a segmentation fault or a
severe user error. A programmer can use the core dump to diagnose and
correct the problem.

core file
A file that preserves the state of a program, usually just before a program
is terminated because of an unexpected error. See also core dump.

D

data parallelism
A situation in which parallel tasks perform the same computation on
different sets of data.

debugger
A tool used to detect and trace errors in computer programs.

E

environment variable
(1) A variable that defines an aspect of the operating environment for a
process. For example, environment variables can define the home directory,
the command search path, the terminal in use, or the current time zone. (2)
A variable that is included in the current software environment and is
therefore available to any called program that requests it.

Ethernet
A packet-based networking technology for local area networks (LANs) that
supports multiple access and handles contention by using Carrier Sense
Multiple Access with Collision Detection (CSMA/CD) as the access
method. Ethernet is standardized in the IEEE 802.3 specification.

executable program
A program that can be run as a self-contained procedure. It consists of a
main program and, optionally, one or more subprograms.

156 Parallel Environment Runtime Edition: PAMI Programming Guide

execution
The process of carrying out an instruction or instructions of a computer
program by a computer.

F

fairness
A policy in which tasks, threads, or processes must eventually gain access
to a resource for which they are competing. For example, if multiple
threads are simultaneously seeking a lock, no set of circumstances can
cause any thread to wait indefinitely for access to the lock.

Fiber Distributed Data Interface (FDDI)
An American National Standards Institute (ANSI) standard for a 100-Mbps
LAN using fiber optic cables.

file system
The collection of files and file management structures on a physical or
logical mass storage device, such as a diskette or minidisk.

fileset (1) An individually-installable option or update. Options provide specific
function, and updates correct an error in, or enhance, a previously installed
program. (2) One or more separately-installable, logically-grouped units in
an installation package. See also licensed program and package.

FORTRAN
A high-level programming language used primarily for scientific,
engineering, and mathematical applications.

G

GDB An open-source portable debugger supporting Ada, C, C++, and
FORTRAN. GDB is a useful tool for determining why a program crashes
and where, in the program, the problem occurs.

global max
The maximum value across all processors for a given variable. It is global
in the sense that it is global to the available processors.

global variable
A symbol defined in one program module that is used in other program
modules that are independently compiled.

graphical user interface (GUI)
A type of computer interface that presents a visual metaphor of a
real-world scene, often of a desktop, by combining high-resolution
graphics, pointing devices, menu bars and other menus, overlapping
windows, icons and the object-action relationship.

GUI See graphical user interface.

H

high performance switch
A high-performance message-passing network that connects all processor
nodes.

home node
The node from which an application developer compiles and runs a
program. The home node can be any workstation on the LAN.

Glossary 157

host A computer that is connected to a network and provides an access point to
that network. The host can be a client, a server, or both a client and server
simultaneously.

host list file
A file that contains a list of host names, and possibly other information.
The host list file is defined by the application that reads it.

host name
The name used to uniquely identify any computer on a network.

I

installation image
A copy of the software, in backup format, that the user is installing, as well
as copies of other files the system needs to install the software product.

Internet
The collection of worldwide networks and gateways that function as a
single, cooperative virtual network.

Internet Protocol (IP)
A protocol that routes data through a network or interconnected networks.
This protocol acts as an intermediary between the higher protocol layers
and the physical network.

IP Internet Protocol.

K

kernel The part of an operating system that contains programs for such tasks as
input/output, management and control of hardware, and the scheduling of
user tasks.

L

latency
The time from the initiation of an operation until something actually starts
happening (for example, data transmission begins).

licensed program
A separately priced program and its associated materials that bear a
copyright and are offered to customers under the terms and conditions of a
licensing agreement.

lightweight core files
An alternative to standard AIX core files. Core files produced in the
Standardized Lightweight Corefile Format provide simple process stack
traces (listings of function calls that led to the error) and consume fewer
system resources than traditional core files.

LoadLeveler pool
A group of resources with similar characteristics and attributes.

local variable
A symbol defined in one program module or procedure that can only be
used within that program module or procedure.

M

management domain
A set of nodes that are configured for management by Cluster Systems

158 Parallel Environment Runtime Edition: PAMI Programming Guide

Management. Such a domain has a management server that is used to
administer a number of managed nodes. Only management servers have
knowledge of the domain. Managed nodes only know about the servers
managing them.

menu A displayed list of items from which a user can make a selection.

message catalog
An indexed table of messages. Two or more catalogs can contain the same
index values. The index value in each table refers to a different language
version of the same message.

message passing
The process by which parallel tasks explicitly exchange program data.

Message Passing Interface (MPI)
A library specification for message passing. MPI is a standard application
programming interface (API) that can be used by parallel applications.

MIMD
multiple instruction stream, multiple data stream.

multiple instruction stream, multiple data stream (MIMD)
A parallel programming model in which different processors perform
different instructions on different sets of data.

MPMD
Multiple program, multiple data.

Multiple program, multiple data (MPMD)
A parallel programming model in which different, but related, programs
are run on different sets of data.

N

network
In data communication, a configuration in which two or more locations are
physically connected for the purpose of exchanging data.

network information services (NIS)
A set of network services (for example, a distributed service for retrieving
information about the users, groups, network addresses, and gateways in a
network) that resolve naming and addressing differences among computers
in a network.

NIS See network information services.

node ID
A string of unique characters that identifies the node on a network.

nonblocking operation
An operation, such as sending or receiving a message, that returns
immediately whether or not the operation has completed. For example, a
nonblocking receive does not wait until a message arrives. A nonblocking
receive must be completed by a later test or wait.

O

object code
Machine-executable instructions, usually generated by a compiler from
source code written in a higher level language. Object code might itself be
executable or it might require linking with other object code files.

Glossary 159

optimization
The process of achieving improved run-time performance or reduced code
size of an application. Optimization can be performed by a compiler, by a
preprocessor, or through hand tuning of source code.

option flag
Arguments or any other additional information that a user specifies with a
program name. Also referred to as parameters or command line options.

P

package
1) In AIX, a number of filesets that have been collected into a single
installable image of licensed programs. See also fileset and licensed
program. 2) In Linux, a collection of files, usually used to install a piece of
software. The equivalent AIX term is fileset.

parallelism
The degree to which parts of a program may be concurrently executed.

parallelize
To convert a serial program for parallel execution.

parameter
A value or reference passed to a function, command, or program that
serves as input or controls actions. The value is supplied by a user or by
another program or process.

peer domain
A set of nodes configured for high availability. Such a domain has no
distinguished or master node. All nodes are aware of all other nodes, and
administrative commands can be issued from any node in the domain. All
nodes also have a consistent view of the domain membership. Contrast
with management domain.

point-to-point communication
A communication operation that involves exactly two processes or tasks.
One process initiates the communication through a send operation. The
partner process issues a receive operation to accept the data being sent.

procedure
In a programming language, a block, with or without formal parameters,
that is initiated by means of a procedure call. (2) A set of related control
statements that cause one or more programs to be performed.

process
A program or command that is actually running the computer. A process
consists of a loaded version of the executable file, its data, its stack, and its
kernel data structures that represent the process's state within a
multitasking environment. The executable file contains the machine
instructions (and any calls to shared objects) that will be executed by the
hardware. A process can contain multiple threads of execution.

The process is created with a fork() system call and ends using an exit()
system call. Between fork and exit, the process is known to the system by
a unique process identifier (PID).

Each process has its own virtual memory space and cannot access another
process's memory directly. Communication methods across processes
include pipes, sockets, shared memory, and message passing.

160 Parallel Environment Runtime Edition: PAMI Programming Guide

profiling
A performance analysis process that is based on statistics for the resources
that are used by a program or application.

pthread
A shortened name for the i5/OS threads API set that is based on a subset
of the POSIX standard.

R

reduction operation
An operation, usually mathematical, that reduces a collection of data by
one or more dimensions. For example, an operation that reduces an array
to a scalar value.

remote host
Any host on a network except the host at which a particular operator is
working.

remote shell (rsh)
A variant of the remote login (rlogin) command that invokes a command
interpreter on a remote UNIX machine and passes the command-line
arguments to the command interpreter, omitting the login step completely.

RSCT peer domain
See peer domain.

S

secure shell (ssh)
A Unix-based command interface and protocol for securely accessing a
remote computer.

shell script
A program, or script, that is interpreted by the shell of an operating
system.

segmentation fault
A system-detected error, usually caused by a reference to a memory
address that is not valid.

server A software program or a computer that provides services to other software
programs or other computers.

single program, multiple data (SPMD)
A parallel programming model in which different processors run the same
program on different sets of data.

source code
A computer program in a format that is readable by people. Source code is
converted into binary code that can be used by a computer.

source line
A line of source code.

SPMD
single program, multiple data.

standard error (STDERR)
The output stream to which error messages or diagnostic messages are
sent.

Glossary 161

standard input (STDIN)
An input stream from which data is retrieved. Standard input is normally
associated with the keyboard, but if redirection or piping is used, the
standard input can be a file or the output from a command.

standard output (STDOUT)
The output stream to which data is directed. Standard output is normally
associated with the console, but if redirection or piping is used, the
standard output can be a file or the input to a command.

STDERR
standard error.

STDIN
standard input.

STDOUT
standard output.

subroutine
A sequence of instructions within a larger program that performs a
particular task. A subroutine can be accessed repeatedly, can be used in
more than one program, and can be called at more than one point in a
program.

synchronization
The action of forcing certain points in the execution sequences of two or
more asynchronous procedures to coincide in time.

system administrator
The person who controls and manages a computer system.

T

task In a parallel job, there are two or more concurrent tasks working together
through message passing. Though it is common to allocate one task per
processor, the terms task and processor are not interchangeable.

thread A stream of computer instructions. In some operating systems, a thread is
the smallest unit of operation in a process. Several threads can run
concurrently, performing different jobs.

trace A record of the processing of a computer program or transaction. The
information collected from a trace can be used to assess problems and
performance.

U

user (1) An individual who uses license-enabled software products. (2) Any
individual, organization, process, device, program, protocol, or system that
uses the services of a computing system.

User Space
A version of the message passing library that is optimized for direct access
to the high performance switch (PE for AIX) or communication adapter (PE
for Linux). User Space maximizes performance by not involving the kernel
in sending or receiving a message.

utility program
A computer program in general support of computer processes; for
example, a diagnostic program, a trace program, a sort program.

162 Parallel Environment Runtime Edition: PAMI Programming Guide

utility routine
A routine in general support of the processes of a computer; for example,
an input routine.

V

variable
A representation of a changeable value.

X

X Window System
A software system, developed by the Massachusetts Institute of
Technology, that enables the user of a display to concurrently use multiple
application programs through different windows of the display. The
application programs can execute on different computers.

Glossary 163

164 Parallel Environment Runtime Edition: PAMI Programming Guide

Index

A
abbreviated names vii
accessibility

keyboard 149
shortcut keys 149

accessibility features
for PE 149

acronyms for product names vii
attribute values

querying 10
updating 12

audience vi

C
configuration attributes

querying 10
updating 12

conventions and terminology vi

D
dispatch functions

initializing 4

E
environment variables

PAMI_EAGER 147
PAMI_RMA_PENDING 147
PAMI_RVZ 147
PAMI_RZV 147
PAMI_SHMEM_PT2PT 147

P
PAMI runtime library

finalizing 8
initializing 6

PAMI subroutines 3
PAMI_AMCollective_dispatch_set 4
PAMI_Client_create 6
PAMI_Client_destroy 8
PAMI_Client_query 10
PAMI_Client_update 12
PAMI_Collective 14
PAMI_Context_advance 28
PAMI_Context_advancev 30
PAMI_Context_createv 32
PAMI_Context_destroyv 35
PAMI_Context_lock 37
PAMI_Context_post 39
PAMI_Context_query 41
PAMI_Context_trylock 43
PAMI_Context_trylock_advancev 45
PAMI_Context_unlock 47
PAMI_Context_update 49
PAMI_Dispatch_query 51
PAMI_Dispatch_set 53

PAMI subroutines (continued)
PAMI_Dispatch_update 55
PAMI_Endpoint_create 57
PAMI_Endpoint_query 59
PAMI_Error_text 61
PAMI_Extension_close 62
PAMI_Extension_open 63
PAMI_Extension_symbol 65
PAMI_Fence_all 67
PAMI_Fence_begin 69
PAMI_Fence_end 71
PAMI_Fence_endpoint 73
PAMI_Geometry_algorithms_num 75
PAMI_Geometry_algorithms_query 77
PAMI_Geometry_create_tasklist 79
PAMI_Geometry_create_taskrange 82
PAMI_Geometry_destroy 85
PAMI_Geometry_query 87
PAMI_Geometry_update 89
PAMI_Geometry_world 91
PAMI_Get 93
PAMI_Get_typed 95
PAMI_Memregion_create 97
PAMI_Memregion_destroy 99
PAMI_Purge 101
PAMI_Put 103
PAMI_Put_typed 105
PAMI_Resume 107
PAMI_Rget 109
PAMI_Rget_typed 111
PAMI_Rmw 113
PAMI_Rput 116
PAMI_Rput_typed 118
PAMI_Send 120
PAMI_Send_immediate 122
PAMI_Send_typed 124
PAMI_Type_add_simple 126
PAMI_Type_add_typed 128
PAMI_Type_complete 130
PAMI_Type_create 132
PAMI_Type_deserialize 134
PAMI_Type_destroy 136
PAMI_Type_query 137
PAMI_Type_serialize 139
PAMI_Type_transform_data 141
PAMI_Wtime 143
PAMI_Wtimebase 144

PAMI_AMCollective_dispatch_set 4
PAMI_Client_create 6
PAMI_Client_destroy 8
PAMI_Client_query 10
PAMI_Client_update 12
PAMI_Collective 14
PAMI_Collective structure types 15
PAMI_Context_advance 28
PAMI_Context_advancev 30
PAMI_Context_createv 32
PAMI_Context_destroyv 35
PAMI_Context_lock 37
PAMI_Context_post 39
PAMI_Context_query 41

© Copyright IBM Corp. 2011, 2012 165

PAMI_Context_trylock 43
PAMI_Context_trylock_advancev 45
PAMI_Context_unlock 47
PAMI_Context_update 49
PAMI_Dispatch_query 51
PAMI_Dispatch_set 53
PAMI_Dispatch_update 55
PAMI_EAGER 147
PAMI_Endpoint_create 57
PAMI_Endpoint_query 59
PAMI_Error_text 61
PAMI_Extension_close 62
PAMI_Extension_open 63
PAMI_Extension_symbol 65
PAMI_Fence_all 67
PAMI_Fence_begin 69
PAMI_Fence_end 71
PAMI_Fence_endpoint 73
PAMI_Geometry_algorithms_num 75
PAMI_Geometry_algorithms_query 77
PAMI_Geometry_create_tasklist 79
PAMI_Geometry_create_taskrange 82
PAMI_Geometry_destroy 85
PAMI_Geometry_query 87
PAMI_Geometry_update 89
PAMI_Geometry_world 91
PAMI_Get 93
PAMI_Get_typed 95
PAMI_Memregion_create 97
PAMI_Memregion_destroy 99
PAMI_Purge 101
PAMI_Put 103
PAMI_Put_typed 105
PAMI_Resume 107
PAMI_Rget 109
PAMI_Rget_typed 111
PAMI_RMA_PENDING 147
PAMI_Rmw 113
PAMI_Rput 116
PAMI_Rput_typed 118
PAMI_RVZ 147
PAMI_RZV 147
PAMI_Send 120
PAMI_Send_immediate 122
PAMI_Send_typed 124
PAMI_SHMEM_PT2PT 147
PAMI_Type_add_simple 126
PAMI_Type_add_typed 128
PAMI_Type_complete 130
PAMI_Type_create 132
PAMI_Type_deserialize 134
PAMI_Type_destroy 136
PAMI_Type_query 137
PAMI_Type_serialize 139
PAMI_Type_transform_data 141
PAMI_Wtime 143
PAMI_Wtimebase 144
pami_xfer_type_t 15
PE

accessibility features 149
prerequisite knowledge vi

R
runtime library

finalizing 8
initializing 6

S
shortcut keys

keyboard 149
subroutines

PAMI 3
PAMI_AMCollective_dispatch_set 4
PAMI_Client_create 6
PAMI_Client_destroy 8
PAMI_Client_query 10
PAMI_Client_update 12
PAMI_Collective 14
PAMI_Context_advance 28
PAMI_Context_advancev 30
PAMI_Context_createv 32
PAMI_Context_destroyv 35
PAMI_Context_lock 37
PAMI_Context_post 39
PAMI_Context_query 41
PAMI_Context_trylock 43
PAMI_Context_trylock_advancev 45
PAMI_Context_unlock 47
PAMI_Context_update 49
PAMI_Dispatch_query 51
PAMI_Dispatch_set 53
PAMI_Dispatch_update 55
PAMI_Endpoint_create 57
PAMI_Endpoint_query 59
PAMI_Error_text 61
PAMI_Extension_close 62
PAMI_Extension_open 63
PAMI_Extension_symbol 65
PAMI_Fence_all 67
PAMI_Fence_begin 69
PAMI_Fence_end 71
PAMI_Fence_endpoint 73
PAMI_Geometry_algorithms_num 75
PAMI_Geometry_algorithms_query 77
PAMI_Geometry_create_tasklist 79
PAMI_Geometry_create_taskrange 82
PAMI_Geometry_destroy 85
PAMI_Geometry_query 87
PAMI_Geometry_update 89
PAMI_Geometry_world 91
PAMI_Get 93
PAMI_Get_typed 95
PAMI_Memregion_create 97
PAMI_Memregion_destroy 99
PAMI_Purge 101
PAMI_Put 103
PAMI_Put_typed 105
PAMI_Resume 107
PAMI_Rget 109
PAMI_Rget_typed 111
PAMI_Rmw 113
PAMI_Rput 116
PAMI_Rput_typed 118
PAMI_Send 120
PAMI_Send_immediate 122
PAMI_Send_typed 124
PAMI_Type_add_simple 126
PAMI_Type_add_typed 128
PAMI_Type_complete 130
PAMI_Type_create 132
PAMI_Type_deserialize 134
PAMI_Type_destroy 136
PAMI_Type_query 137
PAMI_Type_serialize 139

166 Parallel Environment Runtime Edition: PAMI Programming Guide

subroutines (continued)
PAMI_Type_transform_data 141
PAMI_Wtime 143
PAMI_Wtimebase 144

T
trademarks 153

V
values, attribute

querying 10
updating 12

W
wrapper function 14

Index 167

168 Parallel Environment Runtime Edition: PAMI Programming Guide

����

Product Number: 5725-G00
5765-PER
5765-PRP

Printed in USA

SA23-2273-03

	Contents
	About this information
	Information for AIX users
	Information for Linux users
	Who should use this information
	Conventions and terminology used in this information
	Abbreviated names

	Prerequisite and related information
	How to send your comments
	National language support (NLS)
	Functional restrictions for IBM PE Runtime Edition
	Functional restrictions for IBM PE Runtime Edition for AIX 1.1
	Functional restrictions for IBM PE Runtime Edition for Linux 1.2

	Summary of changes
	Changes for PE

	Chapter 1. What's new in PAMI?
	Chapter 2. PAMI subroutines
	PAMI_AMCollective_dispatch_set
	PAMI_Client_create
	PAMI_Client_destroy
	PAMI_Client_query
	PAMI_Client_update
	PAMI_Collective
	pami_allreduce_t details
	pami_broadcast_t details
	pami_reduce_t details
	pami_allgather_t details
	pami_allgatherv_t details
	pami_allgatherv_int_t details
	pami_scatter_t details
	pami_scatterv_t details
	pami_scatterv_int_t details
	pami_gather_t details
	pami_gatherv_t details
	pami_gatherv_int_t details
	pami_alltoall_t details
	pami_alltoallv_t details
	pami_alltoallv_int_t details
	pami_ambroadcast_t details
	pami_amscatter_t details
	pami_amgather_t details
	pami_amreduce_t details
	pami_scan_t details
	pami_barrier_t details
	pami_reduce_scatter_t details

	PAMI_Context_advance
	PAMI_Context_advancev
	PAMI_Context_createv
	PAMI_Context_destroyv
	PAMI_Context_lock
	PAMI_Context_post
	PAMI_Context_query
	PAMI_Context_trylock
	PAMI_Context_trylock_advancev
	PAMI_Context_unlock
	PAMI_Context_update
	PAMI_Dispatch_query
	PAMI_Dispatch_set
	PAMI_Dispatch_update
	PAMI_Endpoint_create
	PAMI_Endpoint_query
	PAMI_Error_text
	PAMI_Extension_close
	PAMI_Extension_open
	PAMI_Extension_symbol
	PAMI_Fence_all
	PAMI_Fence_begin
	PAMI_Fence_end
	PAMI_Fence_endpoint
	PAMI_Geometry_algorithms_num
	PAMI_Geometry_algorithms_query
	PAMI_Geometry_create_tasklist
	PAMI_Geometry_create_taskrange
	PAMI_Geometry_destroy
	PAMI_Geometry_query
	PAMI_Geometry_update
	PAMI_Geometry_world
	PAMI_Get
	PAMI_Get_typed
	PAMI_Memregion_create
	PAMI_Memregion_destroy
	PAMI_Purge
	PAMI_Put
	PAMI_Put_typed
	PAMI_Resume
	PAMI_Rget
	PAMI_Rget_typed
	PAMI_Rmw
	PAMI_Rput
	PAMI_Rput_typed
	PAMI_Send
	PAMI_Send_immediate
	PAMI_Send_typed
	PAMI_Type_add_simple
	PAMI_Type_add_typed
	PAMI_Type_complete
	PAMI_Type_create
	PAMI_Type_deserialize
	PAMI_Type_destroy
	PAMI_Type_query
	PAMI_Type_serialize
	PAMI_Type_transform_data
	PAMI_Wtime
	PAMI_Wtimebase

	Chapter 3. PAMI environment variables
	Accessibility features for PE
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	A
	C
	D
	E
	P
	R
	S
	T
	V
	W

